Везувиан от калциеви скарни в Рила планина

Светослав ПЕТРУСЕНКО

Увод


В настоящата работа са отразени нови данни за морфологията и химизма на везувиана от скарнови минерализации в Северозападна Рила.

Бележки за геологията на района

Районът между Рило-Рогонския батолит и Калинския гранит, в който се разкриват скарновите зони с везувиан, е изграден, според ДИМОВ & ДАМЯНОВА (1996), от две синметаморфни тектонски единици: Прекоречна метагранитова единица и Мальовишка пъстра единица. Пластична зона на срязване, която се проследява между хижата Скакавица и Рилския манастир, разделя Мальовишката единица на две подединици - долна, на биотитобитовите парагнайси (знайси, кварцсъдържащи амфиболи, регки, маломощни прослоики от мрамори и малки тела от метаултрабазити), и горна, пъстра подединица (парагнайси, знайсови шисти, гранат-слюдени шисти, мрамори, метагипсити, метабазити и метаултрабазити). Преобладаващата част от мраморните прослоики
Фиг. 1. Симетрично развита скарнова минерализация около интензивно променена пегматитова жила от находище Пелатуме. Зарисовка на образец НПМ № 7893
1 - мрамор; 2 - реликти от пегматит; 3 - воластонит; 4 - гросулар; 5 - цоузит /милит/; 6 и 7 - безуванови кристали със светложълтозелено ядро и жълтокафяв периферия

изграждат обособен хоризонт сред скалите на Мальовишката metamorfна единица, който се проследява като прекъсната увица на разстояние около 20 km, между Скакавишкото езеро на СЗ и Джендемските езера на ЮИ.


Скарнови минерализации с безуван

Везуван е наблюдаван в скарни при Джендемските езера и местността Мнастирска мандря, Белия улук, северното подножие на върховете Злия
Фиг. 2. Типове зоналност в оцветяването на безуванови кристали в плоскост успоредна на [001]. Находище Голяма Урдаина река. (a) - светлозеленозлатно ядро с тъмна жълто-кафява периферия; (b) и (c) ритмично редуване на светло и тъмно оцветени зони. При (c) има промяна в хабитусната форма на кристала.

зъб, Орловец, Петлиме, Мала Урдаина река, началото на Голяма Урдаина река, езерата Въбре и Близнака от Севемте рилски езера. В скарираната мраморна увъча, която се проследява между Манастирска манура и Джебелмските езера, източно от връх Теодосие една керамика, жълто-зелен, зърнести или рацетан и често дори цветът на място. Безувановите образува мали (7-8 × 2-3 mm) гнезда, предимно срещу гросулара и рядко добре оформени кристали (с дължина до 2.5-3 cm).

Везувианът е една от хармоничните данни в скариите при върховете Орловец и Петлиме. Симетрично или асиметрично разбити скарови зони се наблюдават около маломощни (от 2-3 do 30-40 cm) пегматитови жили, присъстващи срещу скари при една скария срещу биоритови гнезда. Най-известната зона в симетрично устроените скари е обикновено боластонитова, следвана към пегматита от гросуларова, в която се наблюдават увщи или леции от зърност безуван, както и отделни, често зонално оцветени, безуванови кристали (фиг. 1). Розов цюзим (мулт) присъства не рядко на границата с плаизокласовата "зона" (по-скоро хибриден "скариоциден" пегматит), където могат да се наблюдават регки гросули и аланитови индивиди (Аланов & Петрушенко, 1968). В случаите с асиметрична зоналност, обикновено от едната страна на пегматита е разположена гросуларова зона, а другата - безуванова. Освен това, в мраморите се наблюдават и отделни, засечени пластообразни, или гнездовидни скарови тела, с размери от 1 cm до 50-60 cm, най-често мономинерални, изградени от безуван, гросулар, или гросуи със скали.  

147
Фиг. 3. Вертикална поясяна псевдозоналност на безувиянов кристал с редуване на широки безувиянови зони и тесни калцит-безувиянови възви (а и б), безувиянов кристал със светла централна част и тънка тъмноокветена периферия (с)

При изборите на Мала Урция река, в западното подножие на връх Мальовица, се разкрива скарнова зона, в която безувиянът асоциира с гоупсуг, гросулар, скаполит, флогопит, титанит, апатит и хабазит. В началото на Голяма Урция река и Урдините езера се разкриват няколко лещовидни и послойни, почти мономинерални скарнови тела, изградени от едро- и грубозърнести безувиянов агрегати, както и негови добре оформени кристали или от зърнести гросулар и лъчист скаполит. Микроклин-албитови пегматитови жили пресичащи скарнираните мрамори са превърнати в "скарноидни" пегматити, изградени от плаизоцлаз, малко кварц и отделни гнезда от скаполит и безувиян (Петрусенко, 1969).

В мраморите при езерата Близнака и Бъбрека от Седемте рилски езера се проследяват няколко пластообразни и лещовидни скарнови тела, които нямат висока въръзка с разкриващите се в района многообидни пегматитови жили. В минералния състав на негодобре оформени скарнови зони участват предимно андрасит, гоупсуг, амфибол, эпигом, по-рядко скаполит и флогопит, а много ръчко желяза. Установени са още магнетит, шеелит, молибденит, халкопирит, бисмутинит и други сулфиди. Ръчко се срещат и гнездовидни намерки, или отделни кристали от безувиян (Желязкова-Панайотова и гр., 1972).

Характеристика на безувиян

Безувиянът образува средно- до едрозърнести, грубокристални агрегати, които оформят често учебести мономинерални зони, или

148
неправилни лещовидни гнезда в екзоскарните, както и отделни зърна, или добре оформени кристални индивиди. Срещат се и дължести, радиалнолъчести и субпаралелни агрегати с диаметър до 10 см. Двукраини призматични кристали са наблюдавани срещу дребнозърнести мрамори (фиг. 4), в близост до скарнови зони под връх Петлите и при езерото Бъбрека. Везувиановите кристали са с аксиален хабитус, от група A1 (по КОСТОВ, 1993). В повечето случаи са непрозрачни или полупрозрачни и рядко съвършено прозрачни. Срещат се напукани напречно на удължението, а понякога и слабо огънати индивиди. Обикновено пукнатините са запълнени от калицит ± кварц (фиг. 7). Дължината на везувиановите индивиди по оста с се колебае от 0.05 см до 2 см, при широчина до 1 см. Най-големите кристали се достигащи на дължина до 10 см и дебелина до 2.5 см, са намерени в находището при Голяма Урдина река. Оформените везувианови кристални индивиди са изградени от: m {110}, a {110}, p {111} и c {001} (фиг. 4). Най-често се наблюдават в комбинация m a p c, или m a c (БРЕСКОВСКА & ГАБРОВСКА, 1964). Призматичните стени са гладки, блестищи, със слабо изразена вертикална щриховка. По базичния пинакоид се открояват сложни фигури на растеж. Някои от тях представляват плоски, стъпаловидни пирамиди, подредени една до друга, с ребра успоредни на {110}. Междуплоскостните разстояния на везуван от двете най-големи везувианови находища - връх Петлите и Голяма Урдина река са много близки. Съответно параметрите на елементарната клетка също не се различават: до 15,517 Å и 15,513 Å; со 11,791 Å и 11,799 Å, те са определени в Института по минералогия и кристаллография на Техническия университет в Берлин.

Установено е, че относителното тегло, показателите на лъчеозлечване и цветът на везувана от различните скарнови находища в Северозападне Рила са в пряка зависимост от химичния му състав (БРЕСКОВСКА & ГАБРОВСКА 1964). Паралелно с изменението цвета на
въздухан от светлозълтозелен, към жълто-зелен, жълто-кафяв и кафяв, нарастват стойностите на относителното месо - от 3.33-3.36 до 3.45, както и на Ne (1.702-1.710) и No (1.706-1.714) в зависимост от увеличаване съдържанието на желязото (БРЕСКОВСКА & ГАБРОВСКА, 1964; ЖЕЛЯЗКОВА-ПАНАЙТОВА и гр., 1972). Зеленият цвят се дължи на Fe\textsuperscript{3+}, изоморфно заместващо Al\textsuperscript{3+}. Оптическите спектри на поглъщане на тези въздухани показват, че тънката ивица на поглъщане 21600 см\textsuperscript{-1} е свързана с електронните преходи в октаедрично координационно Fe\textsuperscript{3+} (ПЛАТОНОВ, 1976). Обикновено периферията на кристалите е по-тъмно оцветена от вътрешните части, което се дължи на повишаване съдържанието на Fe\textsuperscript{3+} - йоните в процеса на кристализация на въздухан. В дюнилифи въздуханието е предимно безцветни, по-рядко оцветени и плеохроитни: по Ne - безцветен, по Ne - жълто-зелен. В някои кристали се наблюдават газово-течни включения.

При новите изследвания на въздухан на Голяма Урдина река са установени промени в два типа зоналност. Първият се отнася до изменение на цвета му в прерези напречни на оста с вълногръбнати кристали. Наблюдавани са 3 случая: 1 - широка, светлосълтозелена централна зона се сменя от тънка, тъмно оцветена, жълто-кафява периферна зона (фиг. 2a); 2 - сравнително по-тъмна, светлосълтозелена централна зона, се сменя към
Вторият тиp зоналност е поясна. Има наложен характер, и е свързан с развитието на по-късни процеси. Тази зоналност се наблюдава в увлечени по оста с кристали и се проявява в по-ясно групиране на напречни, тънки (0.1-8 mm) белезникави ивици, редуващи се с различно широки жълто-зелени зони (фиг. 3 a и б). Границите между белезникавите ивици и жълто-зелените зони са дифузни. Някои кристални индивиди са покрити изцяло от тънък слой от жълто-кафяв везуван (фиг. 3 b, с). Такъв късен, жълто-кафяв везуван, нараства върху кристали, в които не се наблюдава описаната по-горе зоналност. При отчупване на белезникавите ивици се разкриват малки празници, в които са развити безцветни, дългопризматични, финоиглести кристалчета и вискери (фиг. 6). Те са нараснали ориентирано върху повърхността на основния кристал и представляват типично регенерационно явление. Образуването на светлите ивици може да се обясни с възможността на кородиране разтвори по напречни на увлечението лукнатини в кристалите. Следствието на локалния обхвът на въздействие, разтворите са претърпели силно пресичане с химични съставки на минерала, след което е започнала бърза, ориентирана кристализация на многообразни вискероподобни индивиди върху кородираната повърхност на големите кристали. Останалото свободно пространство се запълва с калцит (фиг. 7), а на места с малко кварц. След термировване на кристалите с HCl, калцитът се разтваря, а остават неразтворените, светло оцветени безцветни везуванови индивиди. Освен калцит и кварц, във везувани от описаните скарнът находища са наблюдавани включения от гунопсиг, плагиоклаз и гроскулар. Установени са случаи на заместване на везувана от скаполит и цоизит.

Публикуванияте досега химични анализи на везувани от скарните в Рила планина (Бресковска & Габровска, 1964; Желязкова-Панайотова и гр., 1972), както и някои химични данни (табл. 1 и 2), ги определят като ниско железни разновидности. В по-голямата част от анализираните образци съдържанията на Fe₂O₃ (0.72-3.16%) преобладават над съдържанията на FeO (0.36-1.38%). В няколко везувани от Белия улук, Петелите и Сегемете езера съдържанията на Fe₂O₃ и FeO са съществени, а в един образец от Сегемете езера FeO > Fe₂O₃ (Бресковска & Габровска, 1964). Обикновено оцветените в жълто-кафяв и кафяв цвят везувани се отличават от по-светло оцветените зелени и жълто-зелени.
разновидности с повишено съдържание на Fe₂O₃ и S (Fe₂O₃ + FeO) (табл. 1 и 2). Тенденцията в изменението на цвета на безуваната от по-тъмен, (кафяв или жълто-кафяв), към по-светъл (жълто-зелен, зелен или безцветен), в зависимост от съдържанието на Fe₂O₃ (Fe₂O₃ + FeO) се проследява в зонално оцветени безуванови кристали и безуванови високер в ходини Голяма Урдина река (табл. 2). Съдържанията на останалите химични компоненти не дават основание за открояване на стабилни зависимости между химичните състави и физиичните свойства на изследванияте безуванани. Впечатление правят обаче устойчиво високите съдържания на някои реги метали като Be - до 1132 ppm и на Bi - 300-600 ppm.

Генетични бележки

Образуването на скарновите минерализации в СЗ Рила е свързано със следните фактори: 1 - наличие на няколко мраморни хоризонта с подходящо структурно положение срещу скалите на метаморфния комплекс; 2 - прояви на гранитен магматизъм, източник на топлина, енергия, както и на флуиди и хидротермални разтвори, които формират различни постмагматични минерализации. По-големата част от скарновите зони са развити в непосредствена близост до микроклин-албитови пегматити и техни хибридни скарноиди производни, в обеса на пластични зони на сърязване (Арнаудов, 2001), описани от Димов & Дамянова (1996). Различават се дифузионни (биметамаражни) и инфильтрационни скарни. Дифузионни скарни се разкриват в най-силно нагрети места на метаморфитите, в югоизточната част на района, при Белия улук и връховете Орловец и Петлие, в близост на гранитоиди и пегматитови инжеция. Такива скарнови минерализации се наблюдават и на запад, при изворите на Мала и Голяма Урдина река. По-ниско температурните, инфильтрационните скарни, са развити в северозападните разкрития на мраморната увичи, при Сегемте езера. Те виждаме следват пластичната зона на сърязване, която се следи от хижа Скалабица, през Сегемте и Урдините езера, към Рилския манастир.

Най-често безуванът в рилските скари образува неоформени зърна, или сатури от такива в тънки увичи, или лещи, а по-рядко и добре кристализирани индивиди, срещу гросулара и мрамора. Пулсионното изменение на съдържанието на Fe в процеса на скарнообразуването, се отразява на химизма както на безуваната, така и на гросулара. Появяват се зонално устроени индивиди, чито периферия са обикновено по-тъмно оцветени поради повишено съдържание на Fe. Намаляването на Fe в някои скарнови находища е съпроводено с увеличаване на Mn, в резултат на което кристализират Mn-съдържащи минерали като розов клиноциозит и розов цоузит (мулум) (Арнаудов & Петрусенко, 1968). Може да се очаква
намирането и на Mn-съдържащ везувиан; розов везувиан с Mn е устанновен от Grice (1989) в месторождението Азбестос, Канада.

Таблица 1
Химичен състав (межл. %) на везувианци от скарнови находища при Джиджемски езера проба 195 (1), Теодосиеви курили проба 197 (2), Мала Урдина река-проба 146 (3), Голяма Урдина река-проба 147 (4) и Урдина езера проба 148 (5)

<table>
<thead>
<tr>
<th>Проба</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>37.08</td>
<td>36.70</td>
<td>36.72</td>
<td>36.54</td>
<td>36.88</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.60</td>
<td>0.50</td>
<td>0.11</td>
<td>0.67</td>
<td>0.16</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.02</td>
<td>19.20</td>
<td>18.90</td>
<td>18.22</td>
<td>19.88</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.66</td>
<td>2.30</td>
<td>1.69</td>
<td>3.16</td>
<td>1.47</td>
</tr>
<tr>
<td>FeO</td>
<td>1.09</td>
<td>1.25</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>2.41</td>
<td>2.45</td>
<td>2.88</td>
<td>2.74</td>
<td>1.74</td>
</tr>
<tr>
<td>CaO</td>
<td>35.49</td>
<td>35.88</td>
<td>37.36</td>
<td>36.47</td>
<td>37.36</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.06</td>
<td>0.11</td>
<td>0.11</td>
<td>0.22</td>
<td>0.18</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.03</td>
<td>0.18</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.07</td>
<td>0.04</td>
<td>0.10</td>
<td>0.40</td>
<td>0.78</td>
</tr>
<tr>
<td>3n- F</td>
<td>1.30</td>
<td>1.28</td>
<td>1.55</td>
<td>1.40</td>
<td>1.71</td>
</tr>
</tbody>
</table>

CumarF₂ = 0 99.96-0.65 100.55-0.54 100.69-0.71
Σ 99.84 99.79 99.31 100.01 99.98
цвят жълто-зелен светло-зелен светло-зелен

Таблица 2
Представителни микросондови анализи (межл. %) на зонален и прекристализиран везувиан от Голяма Урдина река (образец НПМ 350)

<table>
<thead>
<tr>
<th>Външна зона</th>
<th>Вътрешна зона</th>
<th>прекристализиран</th>
<th>Вискери</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.48</td>
<td>36.98</td>
<td>36.34</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.33</td>
<td>0.33</td>
<td>0.38</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19.02</td>
<td>18.68</td>
<td>18.72</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.89</td>
<td>2.69</td>
<td>2.47</td>
</tr>
<tr>
<td>MgO</td>
<td>2.02</td>
<td>2.13</td>
<td>1.85</td>
</tr>
<tr>
<td>CaO</td>
<td>36.11</td>
<td>35.25</td>
<td>35.99</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Σ 96.85 96.16 96.32 96.68
цвят жълто-кафяв жълто-зелен бледозелен безцветен
За образуването на везувиан в скаридираните мрамори е необходим много по-голям принос на Mg, Al, Ca и Fe от алкалните метасоматизиращи разтвори, отколкото е необходим за формирането на гнисис. Увеличаващото се количество на летиви компоненти като F и OH в постмагматичните разтвори препятства образуването на гросулар, но е благоприятно за кристализациите на везувиан (Шабинин, 1968; Іто & Арем, 1970). Жариков (1968) определя устойчивост на везувиана в рамките на 400-600°C и налягане 1 kbar. В алкална среда полето на стабилност е в границите 450-720°C и Pноо 2 kbar. При тези условия везувианът може да съществува стабилно заедно с гросулара. С оглед на експерименталните данни, може да се предположи, че рилските везувани са образувани на неголяма дълбочина - 1-1.5 km, при температурен интервал между 450 и 600°C. Източник на топлина и хидротермална алкална разтвори, носещи компонентите за скаридираните минерализации, са гранитните интрузии, разкриваци сяк със метаморфния комплекс. Очевидно най-благоприятни условия за формиране на везувиан са съществували в скаридираните зони на района, между бръх Петлиците и Урдините езера, където той е най-добре представен.

Представителна част от изследваните образци е включена във фонда на НПМ-БАН, която заедно с работната колекция на автора са основа за изучаване на минералното разнообразие на Рила планина.

Сърдечно благодаря на проф. Йорданка Минчева-Степанова за кратичните и полезни забележки, на ст.н.с. Васил Арнаудов за полезния сътрудничество, свързано с изучаването на Рила, както и на колегите от НПМ.

**Литература**


Костов И. 1993. Минералогия. София, Из. Техника, 734 с.


Платонов А.Н. 1976. Природа окраски минералов. Киев, Наукова думка, 264 с.

Шабинин Л.Н. 1968. О геохимических условиях образования везувиана в скалах. - Геохимия, 10: 1195-1210.


Адрес на автора:
СветославПетрушенко
Национален природонаучен музей
бул. Цар Освободител 1
1000 София

Постъпила на 11.12.2001
Vesuvian aus Karbonatskarne im Rila Gebirge
Svetoslav PETRUSSENKO

(Zusammenfassung)

Vesuviane von den grössten Lagestaten Bulgariens wurden untersucht. Sie sind in Skarnen des Rila Gebirges entwickelt, am Kontakt der Marmore und Pegmatitgänge, wo eine bestimmte Zonalität festgestellt wurde. Der überwiegende Teil der Vesuviane kommt in der Grossularzone vor, wo die Vesuviane Nester nichtregulärer Form bilden, sowie auch Linsen und Bänder. Es wurden körnige, grobkristalline und strahlige Aggregate beobachtet. Die Kristalle sind durch die Formen \( m \{110\}, a \{100\}, p \{111\} \) und \( c \{001\} \) aufgebaut. Sie erreichen eine Länge von 10 cm, meistens sind aber 0.4-0.5 gross. Die Farbe wächst von hellgelb-grün, gelb-grün, gelb-braun bis braun. Einige Individuen sind zonal entlang der \{001\} Form gefärbt. Sie besitzen einen gelb-grünen Kern und eine braune Peripherie. Oft kommen die unterschiedgefärben Zonen wachsend nacheinander vor. Die Kristalle weisen auch eine senkrechte Zonalität entlang der \{110\} Form auf.

Die chemischen Untersuchungen stellen einen höh Gehalt an \( \text{FeO} + \text{Fe}_2\text{O}_3 \) in der äusseren dunkelgefärben Zone fest - 2.89\%, und den tiefsten Gehalt in den Whiskers - 2.44\%. \( \text{Na}_2\text{O} \) wird nur in den langprysmatischen rekristallisierten Individien und in den Whiskers festgestellt. Die Spektralanalyse zeigt höhe Gehale an Be, die einen Wert von 1132 ppm erreichen. Die Dichte des Vesuvians ist 3.33-3.45, und die Hauptbrechungsindices sind \( \text{Ne} = 1.702 - 1.710 \) und \( \text{No} = 1.706 - 1.714 \). Die an zwei Kristallen bestimmten Parameter der Elementarzelle sind: \( a_0 = 15.315 \) \( \text{Å} \) und 15.517 \( \text{Å} \), \( c_0 = 11.791 \) \( \text{Å} \) und 11.793 \( \text{Å} \).

Die Genese des Minerals ist mit der höheren Zufuhr von Mg, F und OH-Gruppen in die postmagmatische alkaline Lösung verbunden, bei einer Temperatur von 450°-600° C und in einer Tiefe von 1.0-1.5 km. Die Temperatur - und Elementenquelle für die Skarnbildung sind die Granitintrusion und die Pegmatite, die marmorhaltende Metamorphengesteine schneiden.