Late Pliocene Hawfinches (*Coccothraustes* Brisson, 1760) (*Aves: Fringillidae*) from Bulgaria

Zlatozar BOEV

Introduction

Recent Hawfinches (*Coccothraustes* Brisson, 1760) are represented by 9 species: 1 of Nearctic, 1 of Neotropic and 7 of Palearctic and of Indo-Malayan distribution. Four subspecies are recognized within the nominate species *Coccothraustes coccothraustes* (Linnaeus, 1758). *C. c. coccothraustes* is the only subspecies spread throughout Europe (Howard & Moore, 1980; Cramp & Perrins, 1994).

Ecobiogeographical notes on *Coccothraustes coccothraustes*

The recent hawfinch *C. coccothraustes* is a resident and migratory species in the temperate zone. It inhabits deciduous broadleaf and mixed forests and prefers wood habitats near the rivers and lakes, forest-steppe areas, both in the lowlands and the mountains. Winter migrations are caused by the lack of food resources (Harrison, 1982). The breeding range lies between 17° C and 25° C July isotherms. It is most specialized to oak-hornbeam forests. The hawfinche inhabits the forests of *Fagus, Ulmus, Fraxinus* and *Acer*, as well as mixed forests up to the tree-line at 1300 m a.s.l. Recently the range of the species is slightly extended westwards (Cramp & Perrins, 1994). *C. coccothraustes* is a representative of the woodland avifauna, related to the broadleaved forests of the southern type. Its larger range is an indication for its Neogene age, when it had appeared in the wood zone of Eurasia. It is well adapted to the nut-fruit tree-species (*Prunus*) or the tree-species with larger seeds (*Fagus, Tilia, Acer, Fraxinus*). The hawfinch survived during the Pleistocene only in the suitable refugia of the southern European peninsulas where it reduced ten times its former pre-Pleistocene range (Moreau, 1954a).
Pleistocene and Holocene distribution of *Coccothraustes coccothraustes*

BRODKORB (1978) listed a series of Pleistocene and Holocene locations of *C. coccothraustes* from Ireland, England, France, Mallorca, Sardinia, Malta, Austria, Italy, former Czechoslovakia, Poland, Hungary, Romania, Ukraine, and Israel. In the more recent literature we have found the following sites of the Quaternary distribution of the hawfinch:

Pleistocene: Aurignacian in the Adzhi-Koba Cave in Crimea (VOINSTVENSNIY, 1960), Paleolithic in the Alimovskiy Naves Cave, Suren 1 Cave, Adzhi-Koba Cave in Crimea (BARYSHNIKOV & POTAPOVA, 1992); Middle Pleistocene in Aridos - 1 in Spain (MOURER-CHAUVIRÉ, 1980); "Pre-Wurmian" in Sutto and Middle Wurmian of Istallosko in Hungary (JANOSSY, 1986); Crimea (DEMENTIEV, 1960); Middle and Late Pleistocene of Corsica, Tavolara, Mallorca, Malta, Crete and Armatia islands (ALCOVER et al., 1992); Early Paleolithic in Grotta dei Fanciulli in Balzi Rossi (CAMPANA, 1946), final of the Wurmian 3 (20,000 B.P.) - the Middle of Wurmian 4 (12,500 B.P.) in Arene Candide (CASSOLI, 1980) in Italy; Wurmian 2-3 in La Balauzziere in Monaco (BONIFAY, 1966); Wurmian 3 (28,000 B.P.) to Postglacial (ca. 4000 B.P.) in a number of sites from S France and Catalonia in Spain (VILLETTE, 1983); Wurmian in the Shandaja Cave in Croatia (MALEZ-BACIC, 1979); Paleolithic in Palestine (TCHERNOV, 1962); Mesolithic in Demen's Dale (BRAMWELL & YALDEN, 1988), Late Pleistocene in Chudleigh Fissure, Torbryans Caves, Happaway Vave (NEWTON, 1923; HARRISON, 1980) in the Great Britain; Late Pleistocene in the Velika Pecina Cave in Croatia (MALEZ-BACIC, 1975); Late Pleistocene in Crvena Stjena in Montenegro (MALEZ & MALEZ-BACIC, 1974a); Middle to Late Villafranchian in the Sandalija 1 Cave and Late Pleistocene (Wurmian 2) in the Sandalija 2 Cave in Croatia, Ortus in France and Grimaldi in Italy (MALEZ-BACIC, 1979; MALEZ & MALEZ-BACIC, 1974b); Late Pleistocene (Aurignacian) in the Istallosko Cave in Hungary (JANOSSY, 1954); Crete (WEESIE, 1988); Wurmian 3 in Grotte Napistileu in Romania (KESSLER, 1977a); Paleolithic in L’Abri du Facteur a Tursac in France (BOUCHUD, 1968), Magdalenian (14 380 - 12 980 B.P.) in Pierre-Chatel (DEBROSSE & MOURER-CHAUVIRÉ, 1973), Wurmian 2 in l’Hortus and de Combe-Grenal (BODES et al., 1972), Magdalenian in Morin (CHAUVIRÉ, 1965), Mindel and Wurmian 3-4 in the Pyrenees (CLOT & MOURER-CHAUVIRÉ, 1986), Magdalenian (13 060 - 13 370 B.P.) in Cantet (Espeche) in the French Pyrenees (CLOT et al., 1984), Magdalenian in the Grotte du Rond-du-Barby in France (MOURER-CHAUVIRÉ, 1974), Tardiglacial in the Jean-Pierre 1 Cave (MOURER-CHAUVIRÉ, 1994) and Wurm 2 in l’Hortus in France (MOURER-CHAUVIRÉ, 1972a).

Holocene: 16-17 century A.D. in Voronkovskiy Grot near Voronkovo Village, 4th millenium B.C. near Botna Village, Eneolithic of Brynzeni I in Moldova (GANYA, 1972); 1-4 century A.D. in Amalda Cave in Spain (EASTHAM, 1990); Early Holocene in the Jean-Pierre 1 Cave in France (MOURER-CHAUVIRÉ, 1994), the Middle Ages (MOURER-CHAUVIRÉ, 1972 b) and Neolithic in the Grotte du Rond-du-Barby (MOUR-
ER-CHAUVIRÉ, 1974), in France and antiquity (the Roman epoch) of Mallorca (BALLMANN & ADROVER, 1970); Vadu-Crisului in Romania (KESSLER, 1977b).

The Pliocene finds of Howfinches in Bulgaria

The fossil material consists of 7 finds and originates from two Villafranchian sites of W Bulgaria (Fig. 1) - Varshets (MNQ zone 17; 6 finds - NoNo NMNHS 114, 116, 117, 119-121), and Slivnitsa (MNQ zone 18-a; No NMNHS 440). As it is seen from the review of the fossil record of Coccothraustes, both sites provide the earliest finds of Howfinches. According to BRODKORB (1978) only two species, C. coccothraustes and C. vespertinus Cooper (California: Rancho La Brea; Pleistocene) have been known by fossil record up to now.

Fig. 1. Distribution of Coccothraustes in Europe: the recent range of C. coccothraustes (dotted); C. balcanicus sp. n. (1); C. simeonovi sp. n. (2) (Drawing: Vera Hristova)

Coccothraustes balcanicus sp. n.

Holotype: Incomplete mandible, chiefly represented by the symphysal part, (Fig. 2); collections of the Fossil and Recent Birds Department of the National Museum of Natural History - Sofia, Bulgarian Academy of Sciences, No NMNHS - 440. Collected
on 17 September 1993 by Z. Boev.

Paratypes: No additional material was collected and no paratypes were specified.

Locality: A destroyed cave in a rocky hill, now a stone quarry, 3 km WNW from the town of Slivnitsa near Sofia (42° 48' N, 23° 05' E).

Horizon: Unconsolidated, unstratified bone elements accumulated in the filling of clay terra-rossa. Usually, the fossil bones are broken. All finds are disarticulated.

Chronology: Late Pliocene - Early Late Villafranchian. The associated fauna of large mammals attributes the site to the end of MNQ 18-a zone (= Seneze unit; SPASSOV, 1998).

Etymology: The name balcanicus is given after the Balkan Range (Stara Planina) - the main mountain chain of the Balkan Peninsula.

Diagnosis: A Late Pliocene species of *Coccothraustes*, differing from *C. coccothraustes* by the bow-like, but not trapezium-like shape in the middle of the edge that ends the symphysys mandibulae in ventral view.

Collections acronyms: UCBL - Université Claude Bérnard - Lyon 1; NMNHS - Natural Museum of Natural History - Sofia.

Comparative Material Examined: The find was compared with analogous skeletal elements of the following species: collections of the UCBL - *C. c. coccothraustes* - 417/1; 417/4; *C. c. japonicus* - 1349/7287; *Pheucticus*

Table 1
Measurements of the mandibula in fossil and recent Coccothraustes

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes balcanicus sp. n. NMNHS-440</td>
<td>11.8</td>
<td>14.0</td>
<td>1.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Recent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/1</td>
<td>13.8</td>
<td>12.7</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/4</td>
<td>16.0</td>
<td>14.0</td>
<td>1.85</td>
<td>1.6</td>
</tr>
<tr>
<td>C. c. japonicus UCBL 1349/7287</td>
<td>14.1</td>
<td>ca. 14.6</td>
<td>ca. 2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Pheucticus melanocephalus capitalis UCBL 314/7287</td>
<td>9.4</td>
<td>8.3</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>Pheucticus ludovicianus UCBL 7546</td>
<td>ca. 10.1</td>
<td>8.4</td>
<td>ca. 1.4</td>
<td>2.3</td>
</tr>
</tbody>
</table>

90
Fig. 3. The manner of measurings and comparison of the bones of fossil and recent Coccothraustes: a - ventral (top) and cranial (bottom) view of mandible; b - mandibles of C. coccothraustes (top) and C. balcanicus sp. n. (bottom); c - mandibles of C. balcanicus sp. n. (top) and C. coccothraustes (bottom); d - cranial view of humerus dist.; e - ulna sin. dist.; f - carpometacarpus prox.; g - radius prox.; h - femur prox. (Drawing: Vera Hristova)

Measurements: see Table 1, Fig. 3 a.

Comparison: All osteometrical and morphological features show unambiguous appurtenance to genus Coccothraustes. Dimensionally it is closer to C. coccothaustes. Both species Pheucticus ludovicianus and Ph. melanocephalus differ strongly from Coccothraustes by their even bow of the inner edge of mandible. C. c. japonicus has a slight edge 2. C. balcanicus sp. n. differs from C. coccothaustes by the bow-like shape in the middle of the edge that ends the symphysys mandibulae in ventral view (Fig. 3 b, c, bellow). The same edge in C. coccothaustes is trapezium-like (Fig. 3 b, c, above). C. balcanicus sp. n. also has a more clearly developed bow-like protruberance in the middle of the base of the symphysis on the ventral surface of the mandible.

Coccothraustes simeonovi sp. n.

Holotype: humerus sin. dist. (Fig. 4 a, b). Collections of the Fossil and Recent Birds Department of the National Museum of Natural History, Bulgarian Academy of Sciences, No NMNHS 120. Collected on 25 July 1990 by Z. Boev.

![Humerus](image)

Fig. 4. Coccothraustes simeonovi sp. n., humerus sin. dist. (holotype) - NMNHS-120: a - lateral view; b - medial view (Photograph: Boris Andreev)

Paratypes: Topotypes (Fig. 5): radius dex. prox., NMNHS 121; femur dex. prox., NMNHS 114); ulna dex. dist., NMNHS 116; carpometacarpus dex. prox., NMNHS 117; ulna sin. dist., NMNHS 119.

Locality: A ponor in a rocky hill, 6 km NNE of Varshets (43° 13' N, 23° 17' E).
Fig. 5. *Coccothraustes simeonovi* sp. n., paratypes: ulna dex. dist., NMNHS 116, a - medial view; b - ulna sin. dist., NMNHS 119, ventral view; c -radius dex. prox., NMNHS 121, lateral view; d - carpometacarpus dex. prox., NMNHS 117, dorsal view; e - femur dex. prox., NMNHS 114, cranial view; f - caudal view (Photograph: Boris Andreev)
Horizon: Unconsolidated, unstratified sediments accumulated in the filling of clay terra-rossa. The fossil bones are broken, sometimes making a kind of bone breccia.

Chronology: Middle Villafranchian. The associate fauna of mammals (Spassov, 1998; V. Popov - pers. comm.) attributes the site to the MNQ 17 zone according to the chronostratigraphical system of Guerin (1990).

Etymology: The name *simeonovi* is given in honour of the eminent Bulgarian ornithologist, Assoc. Prof. Simeon Simeonov (1937 - 1991).

Diagnosis: A Late Pliocene species, differing from *C. coccothraustes* by the thicker diaphysis and longer epicondylus dorsalis of the humerus. In caudal view of the distal epiphysis it also has a sharper and more dorsally pointed epicondylus ventralis.

Comparative material examined: Fossils from Varshets were compared with skeletons of the following species: Collections of the UCBL - *C. coccothraustes* 417/2, 417/6; *Loxia curvirostra* 430/1, 430/2; *Pyrrhula pyrrhula* 427/3, 427/4; Collections of the NMNHS - *C. coccothraustes* - 1/1982, 2/1989, 3/1996.

Measurements: see Table 2, Fig. 3 d.

Comparison: The general shape of the bones suggests a Passeriform bird, mostly resembling the larger Fringillid species. The morphological comparison of humerus, ulna, radius, carpometacarpus and femur suggests a species of *Coccothraustes*. In comparison with the recent *C. coccothraustes*, the fossil species from Varshets shows: No 117 (carpometacarpus prox.) has a sharper

Table 2

Measurements of humerus in fossil and recent *Coccothraustes*

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes simeonovi sp. n. NMNHS-120</td>
<td>3.3</td>
<td>6.1</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Recent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/7</td>
<td>3.3</td>
<td>6.5</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/8</td>
<td>3.4</td>
<td>6.4</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/9</td>
<td>3.2</td>
<td>6.2</td>
<td>1.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 3

Measurements of ulna dist. in fossil and recent *Coccothraustes*

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes simeonovi sp. n. NMNHS-116</td>
<td>2.0</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Coccothraustes simeonovi sp. n. NMNHS-119</td>
<td>2.0</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Recent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/7</td>
<td>2.2</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/8</td>
<td>2.0</td>
<td>2.9</td>
<td>3.4</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/9</td>
<td>2.0</td>
<td>2.8</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Table 4
Measurements of radius dex. prox. in fossil and recent Coccothraustes

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes simeonovi sp. n. NMNHS-121</td>
<td>2.05</td>
<td>1.5</td>
<td>1.25</td>
<td>1.8</td>
</tr>
<tr>
<td>Recent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes coccothraustes UCBL 417/2</td>
<td>1.9</td>
<td>1.5</td>
<td>0.95</td>
<td>1.3</td>
</tr>
<tr>
<td>Coccothraustes coccothraustes UCBL 417/6</td>
<td>2.0</td>
<td>1.5</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Loxia curvirostra UCBL 430/1</td>
<td>1.8</td>
<td>1.3</td>
<td>0.8</td>
<td>1.15</td>
</tr>
<tr>
<td>Loxia curvirostra UCBL 430/2</td>
<td>1.9</td>
<td>1.4</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Pyrrhula pyrrhula UCBL 427/4</td>
<td>1.5</td>
<td>1.2</td>
<td>0.65</td>
<td>1.2</td>
</tr>
<tr>
<td>Pyrrhula pyrrhula UCBL 427/3</td>
<td>1.7</td>
<td>1.2</td>
<td>0.85</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table 5
Measurements of carpometacarpus in fossil and recent Coccothraustes

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes simeonovi sp. n. NMNHS 117</td>
<td>ca 2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Recent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/7</td>
<td>2.2</td>
<td>1.7</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/8</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/9</td>
<td>2.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table 6
Measurements of femur prox. in fossil and recent Coccothraustes

<table>
<thead>
<tr>
<th>Species</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccothraustes simeonovi sp. n. NMNHS-114</td>
<td>4.3</td>
<td>1.8</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Recent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. c. coccothraustes UCBL 417/9</td>
<td>4.0</td>
<td>1.6</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>C. c. coccothraustes NMNHS 2/1989</td>
<td>4.2</td>
<td>1.8</td>
<td>2.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>

processus pisiformis and a bigger processus extensorius; No 116 and 119 (ulna dist.) has a thicker diaphysis and a more proximally positioned last papilla remigalis caudalis; No 121 (radius prox.) has a wider longitudinal crest of the proximal half of diaphysys and a less angular shape of condylus humeralis in dorsal view (length of the fragment - 9.4 mm); No 114 (femur prox.) has a shorter column femori. The measurements of these finds are shown on Tables 3, 4, 5 and 6 (see Figs. 3 d, e, f, g, h).
Discussion

We consider the Slivnitsa specimen as a representative of an extinct Late Pliocene possible ancestor of the recent Hawfinches in W Palaearctic. We also do not exclude the taxonomical identity of *C. simeonovi* sp. n. and *C. balcanicus* sp. n. Both come from the end of the SE European Middle to Late Villafranchian. Due to the lack of homologous skeletal elements in both sites (mandible from Slivnitsa and long bones of the legs from Varshets), and the chronological differences (about 0.5 my) we suggest to distinguish the finds from these sites until additional remains are established.

In any case, the late Pliocene finds from Varshets and Slivnitsa provide the earliest record of the genus *Coccothraustes* up till now.

References

Eastham A. 1990. The bird bones in the Cave of Amalda. - In: La Cueva de Amalda (Zestoa, País Vasco) ocupaciones paleolíticas y postpaleolíticas. - Coleccion barandiaran, 4: 239-259.

Diputacion prov. de Madrid, 145-160.

Received on 10.12.1997

Author’s address:
Dr Zlatozar Boev
National Museum of Natural History
1, Tzar Osvoboditel Blvd
1000 Sofia, Bulgaria
Късноплиоценски черешарки (*Coccothraustes* Brisson, 1760) (Aves: Fringillidae) от България

Златозар БОЕВ

(Резюме)

Представени са всичките седем терциерни останки от черешарки в България, произлизащи от две находища - Сливица и Вършец. Те съдържат най-древните находки на представители на рода и с това са първите находища в света, съдържащи останки от fosили вида черешарки. Въз основа на тях са описани и първите два fosили вида в рода.

Coccothraustes balcanicus sp. n.

Холотип: mandibula - симфизна част, No NMNHS 440.

Диагноза: близък предшественик на редицата *C. coccothraustes*, отличаващ се от него по дълбочината форма на средната част от ръба, завършващ symphysis mandibulae във вентрален изглед. Този ръб при *C. coccothraustes* е с трапецовидна форма. *C. balcanicus* sp. n. има и по-ясно оформено дълбочинно издуване в основата на средната част на вентралната повърхност на симфизата.

Coccothraustes simeonovi sp. n.

Холотип: humerus sinistra distalis, No NMNHS 120.

Диагноза: късноплиоценски представител на рода *Coccothraustes*, отличаващ се от редицата *C. coccothraustes* с по-габелана със симфиза и по-дългия epicondylus dorsalis. В края на изглед дисталната епифиза има по-остър и по-дълъг насечени epicondylus ventralis.

Поради отсъствието на аналогични скелетни елементи на черешарките от двете находища и сравнително неголямата хронологична разлика между тях (около 0,5 млн. г.) не се изключва възможността за траксноморската идентичност между *C. balcanicus* sp. n. и *C. simeonovi* sp. n., която би могла да се докаже едва след намирането на допълнителни fosили материали.