Comparative arachnogeographical analysis of Australia, Papuan Area, New Caledonia and New Zealand

Petar Beron

Abstract: Arachnogeographical analysis of all orders of Arachnida in Australia (incl. Tasmania), New Guinea, New Caledonia, Lord Howe Isl. and New Zealand. The purpose of this study was to outline the representation of the different orders in the separate territories and to verify the arachnological proves for the zoogeographical subdivision of Notogaea and the world. The conclusion is that the level of representation of Arachnida in the classical Notogea (including Papuan area, but excluding Patagonia) was much lower as compared to the level in the vertebrates, with their endemic sub-classes, orders and suborders. Even in the most isolated area (New Zealand) there were no endemics of very high rank. They included (endemisms above genus): Australia (cont.): one endemic family of Scorpions (Urodacidae) Tasmania: only endemic subfamilies of spiders (Plesiothelinae and Hickmanniinae) New Guinean area: no endemics above genus New Caledonia: one endemic family of Opiliones (Troglosironidae) New Zealand: one endemic family of spiders (Huttoniidae) and one of Opiliones (Synthetonychiidae)

Key words: arachnogeographical analysis, Australia, Papuan Area, New Caledonia, New Zealand, Arachnida, endemism

Introduction

The unusual and highly endemic fauna of Australia, New Zealand, New Caledonia and Melanesia has been subject to many analyses, speculations and attempts to explain the presence of animals like Marsupialia, the tuatara, the frog Leiopelma, the extinct moa and the still-living kiwi with regard to past connections or isolation of these remote islands. Most of these efforts were (and are) based on vertebrates leading to delimitating an Australian Region, Papuan and Newzelandian areas of changing status. The vertebrate fauna of Australia is highly endemic, to a degree of a separate kingdom Notogea, but the plants and invertebrates, especially in New Guinea and Northern Australia are closer to the flora and fauna of Indo-Malayan Region (Paleotropic). A complex analysis of Arachnida from these territories could help to elucidate the history of this fauna and to give weight to one or another zoogeographical subdivision.

What is Notogea?

Huxley (1868) coined the term “Notogea” (including Australia and South America). In different books it is considered differently (with or without New Zealand or the Papuan Subregion and sometimes including Patagonia).

Notogea is usually regarded as Kingdom.

New Guinea, Bismarck Archipelago, Solomon Islands and Timor are parts of the Australian Region (Papuan Subregion) Darlington (1957) – Australian Region: Australia and New Guinea De Lattin (1967) Australian Region with three sub-
regions: Continental Australian, New Zealandian and Polynesian. New Guinea is included in the Continental Australian Subregion, the Solomon Islands – in the Polynesian.

Krizhanovskij (2002) – Kingdom Notogea with three Regions: Australian, New Zealandian and Chilean-Patagonian. New Guinea is again part of the Paleotropical Kingdom as the Papuan Region.

Recently Holt et al. (2012) proposed a new subdivision of the continents based on amphibians, birds and mammals. Thus the Earth could be divided into 11 "realms" including the Oriental and Australian realms. New Guinea is included in the Oceanian Realm.

Geography

Melanesia consists of the island of New Guinea, the Bismarck Archipelago, d’Entrecasteaux Islands, the Louisiade Archipelago, the Maluku Islands (not included here), Fiji, Norfolk Island, the Solomon Islands, the Schouten Islands, the Torres Strait Islands, the Trobriand Islands, Vanuatu, Woodlark Island and some other islands. Central is the huge island of New Guinea (829 000 km², maximal height 4884 m). It is actually a small continent – only the surface of the state of Papua New Guinea is 462 840 km². Within this state there are also the „smaller“ islands – New Britain (35.600 km², bigger than Belgium), New Ireland (8600 km², comparable to Corsica), Bougainville (10.500 km²) and others.

About 25% of New Guinea is situated higher than 1000 m a.s.l. The giant mountain chain, stretching along the entire island, is long more than 2000 km and is higher than the Alps (4884 m a.s.l.). The other islands are also montaneous (New Britain 2440 m, Bougainville 2740 m). The rivers of the Big Island, which are fed by up to 6500 mm rain annually) are impressive. The Sepik, Fly, Ramu and Balem Rivers are comparable to the Rhine or Don. In the Papuan phytogeographic Province (of the Malesian Region) are known more than 9000 species and 1400 genera of higher plants, from which 8500 species and 140 genera are endemic.

On the summit of Jaya (Carstensz) the glacial ice covers 6.9 km² (16.4 km² in the middle of 19 century), and is retreating rapidly. Its thickness is circa 40 m.

Australia

The continent of Australia has an area of 7 692 000 km² (without Tasmania, but including the offshore islands). The highest point is Mount Kosciuzko (2228 m).

The continent was detached from the Antarctic some 95-80 Ma (late Cretaceous) and drifted northwards, coming close to the equator and to Sundaland, the present day Indochina and the Greater Sunda islands. Present-day Australia consists of several subregions with very different landscape. Huge areas in Western and Central Australia are deserts and form the so called Eremial.

The northernmost part of the continent, on the Torres Straight, consists of dry savanna in the western part and of rainforests similar to the forests in New Guinea in the eastern part. Udvardy (1975) notes, that Usinger (1963) included Cape York (the northern peninsula of Queensland) to his Papuan subdivision of the Oriental Region, while Gressitt (1961) treated it as a clearly transitional area together with southern New Guinea, and in 1975 in a letter to Udvardy, wrote that „the overlap of Australian and Oriental in southern New Guinea and Northern Australia needs to be shown as an overlap zone with dominance of Oriental elements...“. Prof. Gressitt told the same personally to the present author during a visit in Wau in the same 1975. However, this remark concerns mostly to the flora and the invertebrates, especially the insects. Based on vertebrates, the Papuan Subregion is clearly part of the Australian Region (the differences are between kingdoms!).
According to Keast (1959), approximately one-third of the Australian continent lies within the tropics and the rest is either temperate or sub-temperate. Special adaptations to a cold climate are little developed in Australian animals. According to the same author, Australia has not been in direct land contact with Asia since the beginning of the Tertiary, over 50 Ma. Actually, according to the modern concepts, Australia has never been in direct contact with Asia, as it drifted from the south.

If for the final phase of extinction of the giant animals in Australia (Diprotodon, Palorchestes, Thylacoleo) could be attributed to the combination of aridity and the arrival of aboriginal man and the dingo, eventual changes in the composition of the arachnofauna are to be explained only with the aridisation.

New Caledonia

New Caledonia is located in the subregion of Melanesia in the South-West Pacific. It comprises the main island (Grande Terre), the Loyalty Islands, and several smaller islands. It has a land area of 18,575.5 km².

The Grande Terre is by far the largest of the islands, with an area of 16,372 km², and is elongated northwest-southeast, 350 km long and 50 to 70 kilometers wide. A mountain range runs along the length of the island, with five peaks over 1,500 m. The highest point is Mont Panié at 1,628 m a.s.l.

The detailed analysis of Grandcolas et al. (2008) concerning the formation of the New Caledonian biota comes to the conclusion that it is not a continental, but rather an oceanic island, having its biota formed not earlier than 37 Ma during the Oligocene (confirmed by molecular research).

New Caledonia is extremely interesting from biogeographical point of view and different problems are raised. As a matter of fact, it is archipelago of one big and very varied island, the islands Loyalty, the Pine Island and many other islets and reefs. The total surface is 18,575.5 km², the population – 258,000.

The isolation of New Caledonia dates at least from the Miocene (perhaps from the Oligocene) and thus have been preserved many relict animal and plant, also neoendemics have been formed. After the arrival of the first settlers (the Canaques) ca. 3200 – 3300 years ago disappeared many endemic animals and plants, and the Europeans (since 1853 New Caledonia is a French territory) contributed to this process mostly by mining and agrarian activities, forest destruction, planting foreign trees and others. New Caledonia is 1,300 km away from Australia, 1,500 km from New Zealand and 1,200 km from Fiji.

Tasmania

Tasmania is an Australian island and state. It is 240 km² south of the continent, separated by Bass Strait. The state includes the island of Tasmania and some smaller islands (state area 68,401 km²), of which the main island covers 62,409 km². The highest point is Mount Ossa (1,614 m). Situated at 42°S, Tasmania has a cool temperate climate with four distinct seasons.

The island was joined to the mainland of Australia until the end of the last glacial period approximately 10,000 years ago. Much of Tasmania is still densely forested, with the Southwest National Park and neighbouring areas holding some of the last temperate rain forests in the Southern Hemisphere.

Lord How Is.

The small Lord Howe Island is „The riddle of Pacific“ (Paramonov, 1958, 1960). On a surface of 14,55 km² (10 km long and up to 2 km wide) many endemic species live, and the island is 600 km away from Australia and 900 km away from Norfolk Island. Its inhabitants (387 permanent and up to 400 tourists) are in the „settled area“, in the lowland, because since 1981 70% of the island is a reserve. Fortunately, there are some forest left on the 875 meter high Mount Gower. The archipelago includes also 28 uninhabited islands.

It is considered that Lord Howe is part of the island chain, having existed along the western edge of the shelf Lord Howe Rise, 3000 km long and 300 km wide. The rise extends from New Zealand to the west of New Caledonia and consists of continental rocks, detached from Australian plate 60-80 Ma ago. The shelf is part of Zealandia microcontinent.

New Zealand

The archipelago, called by the Europeans in 1645 New Zealand, is one of the amazing places on Earth, when discussing zoogeography. It is composed by two bigger islands (North and South Islands), which are separated by the Cook Strait (22 km wide), one less big (Stewart) and many smaller islands with a total surface of 268,000 km². New Zealand is 1500 km away from Australia. The relief is very varied with highest point Mount Cook, or Aoraki at 3754 m and 17 other summits above 3000 m. The biota is very altered by humans and the animals they introduced, one way or another. For the invertebrates most important was the change in the environment – the land use, deforestation etc.
Paleogeography

New Guinea. “The consensus of contemporary zoogeographic studies is that though New Guinea and its shelf islands were joined to Australia during several phases of the Pleistocene, New Guinea has a basic, rich biota, much more ancient in origin as well as evolutionary history, and independent of Australian faunal or floral influence” (Udvardy, 1975).

“When New Guinea, the leading edge of of the Australian plate, was first elevated to form an extensive land area in the late Oligocene, it was colonized largely from the adjacent rich tropical lowlands of Malaysia. Biogeographic affinities with Australia are poorly developed, but there has been a spectacular late Tertiary radiation of many groups...Land connections between Australia and New Guinea are also suggested by the mid-Pliocene appearance of the marsupials...The island as a whole is a region of faunal and floral mixing, survival, and evolution in the middle to late Tertiary” (Raven & Axelrod, 1972).

Some data on the glaciation and climate change in New Guinea we find in Löffler (1982): “The Pleistocene glacial history of New Guinea may date back to about 700000 + 100 000 years BP when lava erupted under ice on Mt Giluwe...The last glaciation lasted until about 15 000 years BP when the ice receded rather rapidly to completely disappear by about 9000 years BP...The snowline during the last glaciation was at about 3550 – 3600 m altitude indicating a lowering of the snowline by about 1000 – 1100 m. This would correspond to a temperature depression of about 5-6°C assuming that precipitation was similar to the present”.

Australia.

To partly quote Keast (1959): “New Guinea and Tasmania, lying on the Australian continental shelf, would be brought into contact by a fall in sea-level of about 10 m and 50 m, respectively. They are known to have been joined to Australia during part of the Tertiary and apparently twice during the Pleistocene...This being so, it would seem surprising that the flora of New Guinea bears little resemblance to that of Australia...and much of its invertebrate fauna is likewise Indo-Malayan...In explanation of this it has been suggested that the geologically ancient northern part of New Guinea was once, presumably in the Mesozoic, in direct land contact with

Map 1. Location map of Torres Strait in relation to regional Quaternary shoreline changes (adapted from Rowe, 2007)
Asia … Another proposal is that Australia did not always lie in close proximity to New Guinea but “drifted” into it.

Wallacea

The area, called by Dickerson (1928) “Wallacea” is about 347 000 km² between Wallace and Lydekker Lines (between the Makassar and Lombok Straits and some islands near New Guinea) is usually considered part of Indo-Malayan Region (sometimes considered a separate subregion of Notogea – see Buchar, 1983, or part of the Papuan Subregion of Australian Region – see Krzhanovskiy, 2002). Included are the main island Sulawesi, Lombok, Sumbawa, Flores, Sumba, Timor, Halmahera, Buru, Seram, and many smaller islands. Regarding the fauna, some Australian or Papuan elements (Marsupialia, birds) are represented on Sulawesi and some other islands.

Analyzing the Arachnida of Wallacea, we may observe the following (endemics in bold):

- Palpigradi – fam. Prokoeneniidae (Prokoenenia Börner, in Sulawesi)
- Amblypygi – fam. Charinidae (Charon Karsch – Maluku, Sumbawa); in Flores was found one species of the genus Phrynus – the only known member of Phrynidae in the Old World.
- Thelyphonida (Uropygi) – fam. Thelyphonidae (Chajnus Speijer in Lombok, Thelyphonus Latreille s.l. in Maluku)
- Schizomida – fam. Hubbardiidae indet. (in Sulawesi)
- Solifugae – fam. Melanoblossiidae (Dinorhax Simon in Maluku, the easternmost member of Solifugae)
- Opiliones – Cyphophthalmi – Stylocellidae (Leptopsalis Thorell in Sulawesi); Eupnoi – Sclerosomatidae (Gagrellina Roewer); Laniatoida – Assamiidae, Epedianidae (Epedanus Roewer, Parepedanus Roewer – Sulawesi), Zalmoxidae
- Pseudoscorpiones – Chthoniidae, Chernetidae (Chiridochernes Muchmore – Sulawesi), Cheliferidae (Aporochelifer Beier – Flores), Atemnidae, Garryidae, Garrypinidae, Geogarypidae, Hyidae, Olpiidae, Parahyidae, Pseudechiridiidae, Syarinidae, Tridenchthoniidae, Withiidae

Araneae – no endemic families. Some endemic genera: Araneidae – Plicatiductus Millidge et Russell-Smith (in Sulawesi); Linyphiidae – Dumoga Millidge et Russell-Smith (in Sulawesi); Eutrichuridae – Summacanthium Deebleman-Reinhold in (in Sulawesi)

Missing from the area are Ricinulei, Palaeoamblypygi, Opilioacarida, Dyspnoi, Holothyrida.

It seems that arachnogeographically Wallacea does not contain elements that are very peculiar or different from the Arachnida of the remaining Indonesia. Sensational exception is the amblypygid Phrynus on the Flores island.

Western Sulawesi was connected with East Borneo by late Cretaceous and early Eocene (more than 50 Ma) allowing dispersal of fauna. An island chain was established between east Sulawesi and Australia (late Miocene to late Pliocene).

Collision happened between parts of Gondwanic Outer Banda Arc and Laurasian (volcanic) Inner- Banda Arc (latest Miocene to early Pliocene). Probable land connection(s) existed south, across the Makassar Strait (from late Pliocene).

The Torres Strait as a biogeographical barrier

Discussing the first discovery of Gagrellinae in Australian mainland, Taylor (2009) says: “While Gagrellinae have not previously been reliably recorded from Australia, their discovery in northern Queensland should not represent much of a surprise. Species of Gagrellinae have been described from New Guinea (Roewer 1954a,b, 1955a) and the Solomon Islands (Rainbow 1913; Forster 1949). A land connection between New Guinea and Queensland bridging the Torres Strait would have been present when sea levels were only 10 m lower than the present time, and they have been at least that much lower for 91% of the past 250 000 years (Voris 2000). Closely related or shared taxa are known from both New Guinea and Australia in freshwater fish (…), flowerding plants (…), reptiles (…), spiders (Harvey & Waldock 2000) and insects (…), among others. Taylor (1972) concluded that Torres Strait had not been a significant barrier to dispersal for most insect groups. The apparent absence of Gagrellinae from Australia to date has therefore been unusual, though not unique (species of Uropygi (Arachnida) have been described from New Guinea and the Solomon Islands, but the order is currently known in Australia – Rowland & Cooke 1973)”. According to Szymkowiak (2007), “Despite similar geological history and close vicinity of both areas, the crab spiders show great distinction between New Guinea and Australia. 36 genera on both areas have been recorded, of which only 13 are common (Amycinaea, Cymbacha, Diaea, Hedana, Loxoporetes, Mastira, Misumena, Poropis, Runcinia, Stephanopis, Tharrhalea, Timarus and Xysticus), and 167 species, of which 6 are common…. Thus, similarity of the spider
fauna of the family Thomisidae at genera level is near 37%, while at species level it is 3.7%.”

Tasmania. The island was joined to mainland Australia until the end of the last glacial period approximately 10,000 years ago. Much of Tasmania is still densely forested, with the South-west National Park and neighbouring areas holding some of the last temperate rain forests in the Southern Hemisphere. The Tarkine, located in the far North-West of the island, is the largest temperate rainforest area in Australia covering approximately 3800 km².

According to Darlington (1960), the fauna of Tasmania is depauperate, both in diversity of basic stocks and in total number of species. On the island are (or were) preserved animals that are extinct in mainland Australia.

“Tasmania has long been regarded as a biological treasure trove, supporting an astounding range of species found nowhere else, many of which have survived the perturbations of climate change during the Pleistocene” (Harvey, 1998).

New Caledonia is one of the northernmost parts of the continent Zealandia of which a 93% is submerged. It sank after rising away from Australia 60–85 million years ago (Ma) and from Antarctica between 130 and 85 Ma. New Caledonia was separated from Australia in the late Cretaceous (65 – 66 Ma ago), and subsequently drifted in a north-easterly direction, reaching its present position about 50 Ma ago. According to Neall & Trewick (2008), New Caledonia separated from New Zealand 83 Ma. There is also hypothesis that the islands emerged 37 Ma ago (Oligocene) and that its biota started developing by this time. Some geologists insist that New Caledonia has been entirely submerged several times and repopulated after that. However, biologists accept that parts of the land remained above water as refugia for the archaic animals and plants. Many species from the Gondwanian flora in the late Cretaceous and early Tertiary had probably survived in the temperate climate of New Caledonia and died out in Australia during its strong aridisation. This opinion is contested too.

New Zealand. To understand the history of the biota of New Caledonia, New Zealand and Lord Howe Island we have to follow up the hypothetical development of Zealandia, the New Zealand microcontinent, having existed until some 23 million years ago as result of the break away from Australia about 60–85 Ma and from Antarctic 85 – 130 Ma ago.

According to Fleming (1975), the isolation of New Zealand becomes effective for the land vertebrates (and may-be invertebrates) before the end of Cretaceous. According to Cracraft (1973) „Australia separated from Antarctica in the Eocene and with spreading rates approximately twice as fast as those for New Zealand and this differential movement between Australia-New Zealand and Antarctica formed the Tasman See” (see also Griffiths & Varne, 1972). In any case New Zealand was detached from Antarctica more than 80 Ma ago (Cracraft, 1973), together with the ancestors not only of the moa, kiwi, tuatara and other well known cases also with the ancestors of many insects and other invertebrates. According to Cracraft (1974) “The next portion of Gondwanaland to separate was New Zealand, which was adjacent to West Antarctica and which began drifting in the late Cretaceous at about 40-45 Ma ago”.

Analysis and comments

Palpigradi

In Australia, besides *Eukoenenia mirabilis* (imported), was described an indigenous member of Palpigradi: *Eukoenenia guzikae* Barranco et Harvey, 2008

In New Guinea are recorded only two species: *Eukoenenia cf. lawrencei* and *Koeneniodes cf. frondiger* (fam. Eukoeneniidae: see Condé 1980, 1981).

In New Zealand. Was not recorded

In New Caledonia. Present, non identified.

Ricinulei. Absent in all territories.

Solifugae. Absent in all territories, the closest locality is on Maluku islands (Harvey, 2013b).

Scorpiones

New Zealand: absent

Australia. In his monograph Koch (1977) enumerates for the “Australo-Papuan Region” 29 species of scorpions of the genera *Cercophonius* (Bothriuridae), *Lychas, Isometroides, Isometrus* (Buthidae), *Liocheles* (Hormuridae), *Urodacus* (Urodacidae). Endemic family is Urodacidae, *end. genera* – *Urodacus* Peters with 19 species (incl. seven newly described by L.E. Koch), *Aops* Volschenk et Prendini, and *Isometroides* Keyserling. *Cercophonius* Peters with one sp. (Australia and Tasmania) has been recorded also from the Himalaya. As there are no strictly Papuan species (not found in Australia), after this is the final figure (32, adding the new genus and sp. *Aops oncodactylus* Volschenk et Prendini, 2008 and the two new *Urodacus*, described by Volschenk, Smith & Harvey (2000) and Volschenk, Harvey & Prendini (2012) of species of scorpions on the Australian mainland or
Table 1. Presence of Arachnida in the territories of the described area

<table>
<thead>
<tr>
<th>Group</th>
<th>Australia (Mainland)</th>
<th>Tasmania</th>
<th>Papuan Area</th>
<th>New Caledonia</th>
<th>New Zealand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Palpigradi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fam. Eukoeneniidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Order Ricinulei</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order Solifugae</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order Scorpiones</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Buthidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Hormuridae</td>
<td>+</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Scorpionidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Order Schizomida</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Hubbardiidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order Uropygi</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Hypoctonidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order Amblypygi</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Suborder Neoamblypygi</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Charinidae</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Order Opiliones</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Suborder Cyphophthalmi</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Stylocellidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Pettalidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Troglosironidae</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Suborder Eupnoi</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Acropsopilionidae</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Sclerosomatidae</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Neopilionidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Suborder Dyspnoi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suborder Laniatores</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Triaenonychidae</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Synthetonychiidae</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Assamiidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Samoidea</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Epedanidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Zalmoxidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order Pseudoscorpiones</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Suborder Epirocheirata</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Chthoidea</td>
<td>+</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Tridchthoidea</td>
<td>+</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Pseudotyrannochthoidea</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Feaellidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Pseudogarypidae</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suborder Ichirata</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Hyidae</td>
<td>+</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Group</td>
<td>Australia (Mainland)</td>
<td>Tasmania</td>
<td>Papuan Area</td>
<td>New Caledonia</td>
<td>New Zealand</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fam. Syarinidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Garypidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Geogarypidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Cheiridiidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Pseudochiridiidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Olpiidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Garypinidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Menthiidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Sternophoridida</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Withiidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Cheliferidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Atemnidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Chernetidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order Araneae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Suborder Mesothelae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suborder Orthothelae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Infraorder Mygalomorphae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Barychelidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Hexathelidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Dipluridae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Nemesiidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Theraphosidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Cytraucheniidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Idiopidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Ctenizidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Migidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infraorder Araneomorphae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Austrochilidae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Gradungulidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Filistatidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Periogopidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Stenochilidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Malkaridae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Scytodidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Sicariidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Ochyroceratidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Telemidae</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Pholcidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Tetrablemmidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Dysderidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Oonopidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Comparative arachnogeographical analysis of Australia, Papuan Area, New Caledonia and New Zealand

<table>
<thead>
<tr>
<th>Group</th>
<th>Australia (Mainland)</th>
<th>Tasmania</th>
<th>Papuan Area</th>
<th>New Caledonia</th>
<th>New Zealand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fam. Orsolabidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Segestriidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Hersiliidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Oeciobiidae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fam. Huttioniidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Mimetidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Deinopidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Uloboridae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Anapidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Araneidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Cyatholipidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Linyphiidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Nesticidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Mysmetidae</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Symphytognathida</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Synotaxidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Tetragnathidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Theridiidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Theridiosomatida</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Ctenidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Lycosidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Oxyopidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Gnaphosidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Pisauridae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Psechridae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Stiphidiidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Zoridae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Agelenidae</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Amphivenectida</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Amaurobiidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Anyphaenidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fam. Desidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Dictynidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Hahniidae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Nicodamidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Sparassidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Selenopidae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fam. Zodariidae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Tengellidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fam. Clubionidae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
in Tasmania (the last has no endemic scorpions and shares with the mainland *Cercophonius squama*). We should extract from the 32 sp. *Lychas variatus* (also in Fiji), and the widespread *Isometrus maculatus*, *Liocheles australasiae*, *L. waigiensis*, and *L. karschii*. Thus the endemic species for Australia (*Cercophonius squama* also in Tasmania) are 26.

Australia and New Guinea share only the six widespread species of *Isometrus*, *Lychas* and *Liocheles*.

To quote Koch (1977): “The highly speciated urodacine scorpionid genus *Urodacus* is widespread in Australia but absent from both New Guinea and Tasmania. Because of the time required for the evolution of a genus, there are two possibilities: either the genus *Urodacus* has always been confined to inland Australia, or there have been species outside Australia and these became extinct. The exclusion from Tasmania of the genera *Urodacus* and *Lychas*…could be due to cold. There is however an absence of factors…which might exclude *Urodacus* from New Guinea. I consider therefore that either its species in the more peripheral northern areas of the Australian mainland have reached there relatively recently (since the last major transgression of the sea) or that species in New Guinea have been eliminated.”

In his article on the zoogeography of Australian scorpions Koch (1981) distributed the scorpion taxa in three “levels of endemism”:

1. Cosmopolitan species or non-endemic species shared with Asia: *Isometrus* one species, *Liocheles* three species.
2. Species that have arisen in the Australo-Papuan area from non-endemic genera: *Lychas* three species, *Isometrus* one species.
3. Species that have arisen in Australo-Papua: *Isometroides* one species, *Cercophonius* one species, *Urodacus* 20 species.

He also classified the genera regarding the continental drift:

1. Genera derived from an ancient stock with related genera only in South America: *Cercophonius*
2. Australian genus with less certain relationships and probably ultimately derived from Asia: *Urodacus*
3. Genera in common with Asia: *Isometrus*, *Lychas*, *Liocheles*
4. Genus clearly derived from *Lychas* in Australia: *Isometroides*

Further, the scorpions are distributed into three groups: Southern, Central and Northern species.

The family *Urodacidae* is endemic.

From **Tasmania** has been recorded only *Cercophonius squama* (Bothriuridae), shared with mainland Australia. Also on Flinders I. and King I. (Koch, 1977).

New Guinea. According the monograph of Koch (1977) and the older papers of Takashima (1948, 1950) in New Guinea (incl. the islands Aru and Bougainville) live only six widespread species of the genera *Isometrus*, *Lychas* (Buthidae), and *Liocheles* (Hormuridae). They are shared with Australia. From the Rennell Island (the Solomon Isls) have been found three sp., including the newly described (endemic sp.) *Liocheles penta* Francke et Lourenço, 1991.

New Caledonia. Only three species (Kraepelin, 1914, Simon, 1877, Vachon, 1976).

Fam. Hormuridae

Liocheles australasiae (Fabricius)

L. neocaledonicus Simon

Fam. Buthidae

Isometrus (Reddyanus) *heimi* Vachon

Schizomida. Present in Australia and New Guinea, indet. in New Caledonia, absent in New Zealand.

Australia. See Harvey (1992, 2000a, 2000b, 2001b), Harvey, Berry, Edward & Humphreys (2008); for Melanesia see Hansen & Srensen (1905)

The first member of the order Schizomida from **Australia** (a troglobitic one) was described by Harvey (1988), despite the fact that the order was recorded from this continent as early as 1963. In his impor-
tant paper of 1992 Harvey described five new genera (Draculoides, Apozomus, Bamazomus, Notozomus and Julattentienus) and 24 new species of Schizomida. From the map 2 is clear, that all these species are known from the periphery of the continent: the far west, far north and the easternmost parts of Australia. Later Harvey (2000) added two more genera Brignolizonomus and Attenuizomus, with three new species, in 2008 was added Paradraculoides Harvey, Berry, Edward et Humphreys. Currently (2017) in Australia are known 53 sp. of the genera Draculoides (6), Apozomus (11), Bamazomus (5), Notozomus (17), Julattentienus (2), Brignolizonomus (3), Paradraculoides (4), [Ovozomus] and Attenuizomus (4) (end. genera in bold). This is the highest number of genera and species in one country and is due mostly to the research of M. Harvey.

“Schizomus” modestus Hansen, 1905 is described from New Guinea and recorded also in New Britain and W. Malaysia (unverified record of Buxton, 1917). In the collection of P. Beron in Sofia there are Schizomids, collected by me in New Ireland in 1975 (Berón, 1975).

Only Hubbardiidae indet. are mentioned from New Caledonia (Reddell & Cokendolpher, 1995).

Amblypygi

For Australia see Dunn (1949), Harvey (1985), Harvey & West (1998), Monteith (1965); for New Guinea see Dunn (1949), Gravely (1915), Rahmadi & Kojima (2010), Thorell (1888); for New Caledonia see Kraepelin (1914), Simon (1895).

In Australia (the Northern Territory, Queensland and the Australian Christmas Island) are known six sp. of Amblypygi of the genera Charon Karsch (three sp.) and Charinus Simon (three sp.) (Charinidae). They are known only from the tropical part of the continent. All species are (so far) endemic for the areas of description. From Western Australia has been recorded another species (Harvey, Rahmadi & Aland, 2012).

In Melanesia are present four genera of Amblypygi:

Fam. Charinidae

Charinus Simon, 1892 – Ch. australianus (L. Koch)(Samoa, Fiji), Ch. pescotti Dunn (Solomon Isl.)

Fam. Charontidae

Charon Karsch – Ch. grayi (Gervais)(? = papuanus Thorell)(New Guinea)

Stygophrynus Kraepelin – S. (Neocharon) forsteri Dunn (Solomon Isl., endemic for Guadalcanal)

Members of Amblypygi recorded from New Caledonia include Charinus neocaledonicus Simon, 1895 (Charinidae), endemic species of a widespread genus. Other members of the same genus (all of them known from caves) are three subspecies of Ch. australianus and the endemic Charinus pecki Weigoldt, 2006.

Thelyphonida (Uropygi). Present in the Papuan area, absent in Australia, New Zealand and New Caledonia.

On the island of New Guinea and the nearby islands of Fergusson, New Ireland and New Britain live three species of “Abaliella” Strand (Pocock, 1898). One Thelyphonus was described by Rowland (1973a) from Guadalcanal (Solomon Islands), added to the other species from the Solomons Thelyphonus leucurus Pocock, 1898. The widespread Minbosius manilanus (C.L. Koch) lives on the Moluccas, in New Guinea and the Philippines. All they belong to Thelyphonidae, Thelyphoninae, typical for the Papuan area, Samoa, the Philippines and SE Asia. Haupt (2009a) synonymise Abaliella Strand, Minbosius Speijer and Tetrabalius Thorell with Thelyphonus Laterille.

Pseudoscorpiones.

Endemic genera of pseudoscorpions in New Guinea are:

Fam. Cheliferaidae – Papuchelifer Beier, 1965 (three species)

There are also genera (Cacoxylus, Acanthochernes, Gelachernes) known only from New Guinea and the nearby Solomon Islands (Melanesian endemics)

Endemic genera of pseudoscorpions in Australia (without Tasmania) are:

Fam. Olpiidae: Austrohorus Beier, 1966 (one
sp.); Linnaeopilum Harvey et Leng (one sp.)
Fam. Cheliferidae: Australochelifer Beier, 1975
(one species)
Fam. Chernetidae: Conicochernes Beier, 1948
(four species), Marachernes Harvey, 1992 (three species)
Endemic genera for Tasmania are Neopseudogarypus Morris, 1948 and Oreolpium Harvey et Štáhlavský (Garypinidae)
Endemic genus for New Guinea and the Bismarck Archipelago:
Fam. Cheliferidae
Papuchelifer Beier, 1965 – Indonesia (Papua), Papua New Guinea (three sp.)
Endemic genus for the Solomon Islands:
Fam. Cthernetidae
Cylochernes Beier, 1970 – Guadalcanal (one sp.)
The known pseudoscorpions from Vanuatu (New Hebrides) are only four species belonging to four genera and the families Atemnidae, Cheliferidae, Cthernetidae. Lissochelifer insularis (Beier) is common with New Guinea, Paratemnoides salomonis and Haplochernes hebridicus – with the Solomon Islands. Only Hebridochernes paradoxus is endemic species to Vanuatu.
On Fiji are registered three species of the genera Geogarypus (Garypinidae) and Haplochernes (Cthernetidae). Geogarypus longidigitatus (Rainbow, 1897) and Haplochernes funafutensis (With, 1907) were described from Funafuti (Tuvalu), Haplochernes ellenae Chamberlin, 1938 – from Viti Levu (Fiji).
In New Caledonia and the Loyalty Isls are known 14 species of Pseudoscorpiones from 10 genera of seven families: Cththoniidae, Tridenchthoniidae, Parahyidae, Syarinidae, Garypinidae, Atemnidae, and Cthernetidae. Among them are the endemic species Hebridochernes caledonicus, H. gressitti, H. maximus, Nesidiochernes caledonicus, Paralabrinus (end. genus) novacealedonicus, Ambylopium ruficeps, Ideobisium antipodum, Anaulacodithella novacealedonica, A. reticulata, Sathrochthonius kaltenbachi, Tyrannochthonius troglphilus, T. zonatus – 12 sp., or 86% endemism (BEIER, 1940, 1964, 1966, 1966d, 1968, 1976, 1979; SIMON, 1880).
For the Lord Howe Island Beier (1976) has published data on eight species of pseudoscorpions (four endemics for the island), seven genera, six families (Cththoniidae, Dithiidae, Olpiidae, Atemnidae, Cthernetidae, Cheliferidae). One endemic subgenus Phloeochthonius – troglogite. Notogean genera are Anaulacodithella, Philomaoria.
Endemic genera:
Fam. Cththoniidae
Maoirichthonius Chamberlin, 1925 (one sp.), Sathrochthoniella Beier, 1967 (one sp.), Tyrannochthoniella Beier, 1966 (one sp.)
Fam. Olpiidae
Nelsoninus Beier, 1967 – New Zealand (South Isl.)(one sp.)
Fam. Cthernetidae
Apatochernes Beier, 1948 – New Zealand (Campbell Isls, Snares Isls, Auckland Isls, Chatam Isls, Norfolk Isl. (17 sp.).
Heterochernes Beier, 1966 – New Zealand (one sp.)
Opiliones
In Australia (without Tasmania) are known ten indigenous families of Opiliones.
Cyphophthalmi
In Australia have been registered nine sp. of Cyphophthalmi of two genera of the family Pettalidae (BOYER & GIRIBET, 2007, CLOSE & GIRIBET, 2007,
Giribet, 2003, Juberthie, 1988b,). The genera are endemic in Queensland (Austropurcellia Juberthie, 1988, six sp.) and Western Australia (Karripurcellia Giribet, 2003, three sp.).

Fam. Neopilionidae – Arrallaba Hunt et Cokendolpher (one sp.), Ballarra Hunt et Cokendolpher (six sp.), Plesioballarra Hunt et Cokendolpher (one sp.), Hypomegalopsalis Taylor (one sp.)

Hesperopilio Shear (WA, one sp.). Unclear family within Phalangioidea.

Fam. Sclerosomatidae – Gagrella Stoliczka (one sp.)

Dyspnai – Fam. Acropsopilionidae – Acropsopilio Silvestri, 1905 – Queensland (one sp.), Acropsopilio Forster, 1955 (= Tasmanopilio Hickman, 1957) – NSW, Queensland (two endemic sp., the genus known also from Tasmania and Chile)

Laniatores

In Australia (without Tasmania) are known Laniatores of 54 genera (39 genera in Triaenonychidae) and six families (Assamiidae, Phalangodidae, Podoctidae, Samoidae, Zalmoxidae, Triaenonychidae).

Endemic genera of Opiolones Laniatores for Australia (Tasmania excluded) are:

Fam. Triaenonychidae – Breviacantha Kauri, 1954 (one sp.), Callihamia Roewer, 1942 (one sp.), Callihanus Roewer, 1931 (one sp.), Cluniella Forster, 1955 (three sp.), Heteronuncia Roewer, 1920 (one sp., Queensland), Holonuncia Forster, 1955 (13 sp., ACT, NSW, Victoria), Perthacantha Roewer, 1931 (one sp.), Yatala Roewer, 1942 (SA, one sp.), Conoculus Forster, 1949 (one sp.), Dingupa Forster, 1952 (one sp., WA), Dipristes Roewer, 1931 (one sp.)

Fam. Samoidae – Badessania Roewer, 1915

Laniatores

Endemic genera are:

Fam. Triaenonychidae

The collection of P Beron from New Guinea, New Britain and New Ireland is still under study.

Cyphophthalmi

Until recently, Cyphophthalmi were not registered east of the Lyddeker Line. However, two sp. of Stylocellus Westwood,1874, genus known from Malaysia, Indonesia, Singapore, and Palawan (Philippines), have been found in Papua (Indonesian New Guinea)(Clouse & Giribet, 2007). The animals don't cross salt water areas, so a problem arises about their establishment in New Guinea.

Eupnoi

Fam. Sclerosomatidae – Gagrella Stoliczka

Dyspnai – not recorded from Melanesia

Laniatores

In Melanesia are recorded Laniatores of 27 genera and the families Assamiidae, Podoctidae, Epedanidae, Samoidae, Zalmoxidae.

Endemic genera in New Guinea are:

Fam. Assamiidae

Granobunus Roewer, 1912 (one sp.)
Euwintonius
Comparative arachnogeographical analysis of Australia, Papuan Area, New Caledonia and New Zealand

Heteropygoplus
Roewer, 1915 (one sp.), Apygoplus Roewer, 1912 (three sp.), Macrodampetrus Roewer, 1915 (two sp.), Metadampetrus Roewer, 1915 (two sp.), Metamosoia Roewer, 1915 (one sp.), Mesoia Roewer, 1912 (one sp.), Neonothippus Roewer, 1912 (one sp.), Dukkeriana Roewer (one sp.), Sernowniaus Roewer

Fam. Podocidae (incl. Erecananiinae and Ibaloninae)

Asproleria Roewer, 1949 (one sp.), Heterovalbonius C.J. Goodnight et M.L. Goodnight, 1947 (one sp.), Heteropodoctis Roewer, 1912 (one sp.), Orobutus Goodnight et Goodnight, 1947 (one sp.), Paramosoceras Roewer, 1915 (one sp.), Podocinus Roewer, 1923 (one sp.), Proholozoster Roewer, 1915 (one sp.),

Santobius Roewer, 1949 (= Mesoceras Soerensen, 1886, precoccup., = Mesoceratula Roewer, 1949) – Vanuatu, Fiji (two sp.)

Fam. Samoideae
Badessa Soerensen, in L. Koch 1886 – Fiji (one sp.)
Fijicolana Roewer, 1963 – Melanesia (one sp.)
Fam. Zalmoxidae – in New Guinea and the nearby islands live 26 sp. of the genus Zalmoxis Soerensen (the only Zalmoxis in the Eastern Hemisphere)

New Caledonia (Jubertie, 1979, Kury & Machado, 2009, Shear, 1993);). Most interesting is the endemic family of Cyphophthalmi

Troglosirodidae with one genus Troglosiro
Jubertie, 1979 and 13 sp.

Dysnoplus – missing

Laniatores
From New Caledonia and the Loyalty Isls are known Laniatores from the families Triaenonychidae, Zalmoxidae (eight endemic sp. of genus Zalmoxis)(Simon, 1881, Roewer, 1912, 1914, 1949, Goodnight & Goodnight, 1948, Sharma et al., 2012).

Endemic Laniatores in New Caledonia are the following genera:

Fam. Triaenonychidae
Diaenobunus Roewer, 1914 (one sp.), Triconobunus Roewer, 1914 (one sp.), Santobius Roewer, 1949 (= Mesoceras Soerensen, 1886, precoccup., = Meso ceratula Roewer, 1949) – Vanuatu, Fiji (two sp.)

Cyphophthalmi
In New Zealand have been recorded 23 sp. of the fam. Pettalidae:

Rakaia Hirst, 1925 – 12 species (endemic genus)
Aoraki Boyer et Giribet, 2007 – eight species (endemic genus)
Neopurcellia Forster, 1948 – South Island (three species)(endemic genus)

Eupnoplus
Fam. Neopilionidae (incl. Monoscutidae)
– Forsteropsalis Taylor (nine sp.), Mangatangia Taylor (one sp.), Pantopsis Simon (nine sp.);

Monoscutinae (end. subfamily): Achiasta Forster, Monoscutum Forster, Templar Taylor

Dysnoplus
Fam. Acropsopilionidae – Acropsopilus
Silvestri, 1904 (one sp.)

Laniatores
In New Zealand are registered 68 sp. of Laniatores of 15 genera and two families. Endemic supraspecific taxa:

Fam. Synthetonychiidae – end. family
Synthetonychia Forster, 1954 (14 sp.)

Fam. Triaenonychidae
Hedwigia Roewer, 1931 (one sp.), Hendea Roewer, 1931 (14 sp.), Hendeala Forster, 1954 (two sp.), Metanuncia Roewer, 1914 (one sp., Stewart Island), Neounancia Roewer, 1914 (five sp.), Prasma Roewer, 1931 (three sp.), Prasmiola
Forster, 1954 (one sp.), Psalenoa Roewer, 1931 (one sp.), Triregia Forster, 1948 (three sp.), Algidia Hogg, 1920 (eight sp.), Cenefia Roewer, 1931 (four sp.), Muscicola Forster, 1954 (one sp.), Pristobunus Roewer, 1931 (two sp.)

Subfam. Sorensenellinae – end. subfamily

Karamea Forster, 1954 (four sp.), Sorensenella Pocock, 1903 (four sp.)

(1989), Raven (1978);

Two endemic (and four non-endemic) families are Araneidae (33, six endemic), Lycosidae (25, of which 11 endemic).

In Australia, there are 46 families of spiders. Without New Caledonia, Berland (1924, 1929), Platnick (1989), Raven (1978); Robinson (1982), Lehtinen & Ahti (1897) in Australia are registered at least 73 families of spiders. Without New Caledonia, Berland (1924, 1929), Platnick (1989), Raven (1978); Robinson (1982), Lehtinen & Ahti (1897) in Australia have changed these numbers.

Vicarian genera of spiders in Australia (Tasmania excluded) are:

Fam. Hexathelidae
Hexathelinae

Atrax O. P-Cambridge, 1877 (three sp.),

Bynaminiella Raven, 1978 (four sp.),

Hadronyche L. Koch, 1873 (31 sp., incl. one from Tasmania),

Paraembolides Raven, 1980 (eight sp.),

Teranodes Raven, 1985 (two sp.).

Fam. Dipluridae

Subfam. Euagrinae

Australothele Raven, 1984 (seven sp.),

Caledothele Raven, 1991 (seven sp., one is from New Caledonia),

Carrai Raven, 1984 (one sp., New South Wales),

Cethagus Thorell, 1881 (12 sp.),

Namirea Raven, 1984 (seven sp.) incertae sedis

Troglopliura Main, 1969 (one sp.).

Fam. Anapidae

Chasmocephalon O. P-Cambridge, 1889 (eight sp.),

Maxananis Platnick et Forster, 1989 (nine sp.),

Nortanapis Platnick et Forster, 1989 (one sp.),

Octanapis Platnick et Forster, 1989 (two sp.),

Queenslanapis Platnick et Forster, 1989 (one sp.),

Risdonius Hickman, 1939 (three sp.),

Spinanapis Platnick et Forster, 1989 (nine sp.),

Viclanapis Platnick et Forster, 1989 (one sp.)

Fam. Pararchaeidae

Westrarchaea Rix, 2006 – Western Australia (three sp.)

Fam. Gallienellidae

Meedo Main, 1987 (13 sp.),

Neato Platnick, 2002 (seven sp.),

Oreo Platnick, 2002 (five sp.),

Peelo Platnick, 2002 (one sp., Queensland),

Questo Platnick, 2002 (one sp., Australia, Victoria)

Fam. Lamponidae

Asadipus Simon, 1897 (20 sp.),

Bigenditia Platnick, 2000 (two sp.),

Centroina Platnick, 2002 (11 sp.),

Centrothele L. Koch, 1873 (10 sp.),

Centsymplia Platnick et Forster, 1989 (two sp.),

Lampona Thorell, 1869 (56 sp., five of which shared with Tasmania, two with New Zealand, one in New Guinea),

Lamponata Platnick, 2000 (one sp.),

Lamponella Platnick, 2000 (three sp.),

Lamponella Platnick, 2000 (10 sp., one shared with Tasmania),

Lamponicta Platnick, 2000 (one sp.),

Lamponina Strand, 1913 (six sp.),

Lamponoides Platnick, 2000 (one sp.),

Lamponova Platnick, 2000 (one sp., shared with New Guinea),

Lamponusa Platnick, 2000 (one sp.),

Longepi Platnick, 2000 (eight sp.),

Notsodipus Platnick, 2000 (18 sp.),

Paralampona Platnick, 2000 (eight sp.),

Platylampona Platnick, 2004 (one sp.),

Pronosternum Dunn, 1951 (three sp., one shared with Tasmania),

Pseudolampona Platnick, 2000 (12 sp.),

Queenvic Platnick, 2000 (four sp.).

In Tasmania have been recorded two endemic subfamilies (Plesiothelinae and Hickmaniinae) and some endemic genera of spiders:

Fam. Hexathelidae

Plesiothelinae – Tasmania (end.)

Plesiothela Raven, 1978 – one sp.

Fam. Anapidae

Acrobleps Hickman, 1979 – (one sp.),

Hickmanapis Platnick et Forster, 1989 (two sp.),

Tasmanapis Platnick et Forster, 1989 (one sp.)

Fam. Austrochilidae – Chile, Argentina, Tasmania (nine sp.)

Hickmaniinae (as family Hickmaniidae)

Hickmania Gertsch, 1958 – one sp. – Hickmania troglodytes (Higgins et Petterd, 1883), Cave

Fam. Orsobolidae

Cornifalx Hickman, 1979 (one sp.),

Hickmanolobus Forster et Platnick, 1985,

Olgania Hickman, 1979, Carathea

Moran, 1986,

Tupua Platnick in Forster, Platnick et Coddington, 1990, Cicirra Simon,

Harvey

Fam. *Malkaridae*
Carathea Moran, 1986 (two sp.)
Fam. *Micropholcommatidae*
Epigastrina Rix et Harvey, 2010 (three sp.)
Fam. *Synotaxidae*
Tapua Platnick, 1990 (four sp.)
Fam. *Lycosidae*
Tasmanicasa Roewer, 1959 (one sp.)
Fam. *Psechridae*
Tjurunga Lehtinen, 1967 (one sp.)
Fam. *Miturgidae* (Zorinae)
Odomasta Simon, 1909 (one sp.)
Fam. *Aranidae*
Collina Urquhart, 1891 (one sp.)
Fam. *Amphinectidae*
Tanganioides Davies, 2005 (six sp., incl. one in Victoria), *Tasmabrochus* Davies, 2002 (three sp.), *Tasmarubrius* Davies, 1998 (five sp.), *Teeatta* Davies, 2005 (three sp.)
Fam. *Amaurobiidae* – only endemic species
Fam. *Desidae*
* Cicirra* Simon, 1886 (one sp.), *Namandia* Lehtinen, 1967 (one sp.), *Ommatauxesis* Simon, 1903 (one sp.), *Toxops* Hickman, 1940 (one sp.)
Fam. *Hahnidae*
Neoaviola Butler, 1929 (one sp.)

The spiders of *New Guinea*

In New Guinea and the Bismarck Archipelago (incl. Buka and Bougainville) have been recorded spiders of at least 54 families (*Balogh*, 1936, *Baert*, 1980, 1984, *Brignoli*, 1981). The collection, brought by me (43 sp. of 15 families), was identified only partially by *Brignoli* (1981), but his untimely death did not allow him to describe the many new taxa in this collection. It as noted that some species related to groups believed “typical” of New Zealand (*Stiphidiidae*). The preliminary conclusion of *Brignoli* (1981) is: “It is still too early to appreciate the value of the proposal of *Lehtinen* (1980), of abandoning the traditional Oriental and Austral regions in favour of an Indo-Pacific and a South Gonwanian region, but I would like to observe that, if it is probably possible to accept the limited value of Wallace’s and Weber’s lines for spiders, I do not see every definite border between the two new regions proposed by Lehtinen”.

Some endemic genera of spiders in the “Papuan area” are:
Fam. *Telemidae*

Jocquella Baert, 1980 – New Guinea (two sp.)
Fam. *Theridiidae* (Hadrotarsinae)
Yoroa Baert, 1984 – New Guinea (two sp.)
Fam. *Philodromidae*
Pseudoscellurus Balogh, 1936 (one sp.),
Senoculifer Balogh, 1936 (three sp.)
Fam. *Sparassidae*
Exopalistes Hogg, 1914 – New Guinea
Strandellum Kolosváry, 1934 – New Guinea
Fam. *Lycosidae*
Satta Lehtinen et Hippa, 1979 – New Guinea
Fam. *Salticidae*
Allococalodes Wanless, 1982 – New Guinea
Aruna Strand, 1911 – New Guinea, Aru
Bulolia Zabka, 1996 – New Guinea
Chalcolema Zhang et Maddison, 2012 – New Guinea

[**Coccorchestes** Thorell, 1881 – 38 sp. from New Guinea, one from New Britain, one from Queensland]
* Cucudeta M Addison, 2009 – New Guinea
* Diolemus* Thorell, 1870 – 16 sp. in New Guinea, 2 in Moluccas
* Furculattus* Balogh, 1980 – New Guinea, New Britain (one sp.)
* Leptathamas* Balogh, 1980 – New Guinea
* Opistoncana* Strand, 1913 – New Ireland
* Papuaneon* Maddison, 2016 – New Guinea
* Paraharmochirus* Szombathy, 1915 – New Guinea
* Porius* Thorell, 1892 – New Guinea (two sp.)
* Saitissus* Roewer, 1938 – New Guinea
* Tabuina* Maddison, 2009 – New Guinea (three sp.)
* Tarodus* Pocock, 1899 – New Britain
* Variratina* Zhang et Maddison, 2012 – New Guinea
* Viribestus* Zhang et Maddison, 2012 – New Guinea
* Zabkattus* Zhang et Maddison, 2012 – New Guinea

It is to notice, that many families of spiders, known from Northern Australia, are not (yet?) registered in New Guinea.

The list of Araneae of Fiji contains 122 sp. of spiders (part of them indet.), of 35 families (*Evenhuis*, 2006). *Lakarobius* Berry et al. (*Salticidae*) is endemic genus.

In *New Caledonia* have been recorded spiders of Anapidae, Dipluridae, Desidae, Pararchaeidae. Nearly 200 spider species have been recognized thus far (until 1993 have been 112 genera and 194 sp., af-

Endemic genera of spiders are:

Fam. Dipluridae

Stenygrocerus Simon, 1892 (six sp.)

Fam. Anapidae

Caledanapis Platnick et Forster, 1989 (six sp.),

Montanapis Platnick et Forster, 1989 (one sp.),

Mandanapis Platnick et Forster, 1989 (one sp.),

Bradystichus Simon, 1889 (two sp.),

Fam. Barychelidae

Barycheloides Raven, 1994 (five sp.),

Barychelus Simon, 1889 (two sp.),

Encyocrypta Simon, 1889 (32 sp.),

Natgeogia Raven, 1994 (one sp.),

Orstom Raven, 1994 (four sp.),

Questocrypta Raven, 1994 (one sp.)

Fam. Desidae

Canala Gray, 1992 (two sp.)

Fam. Lamponidae

Centrocalia Platnick, 2000 (three sp.)

Fam. Theridiidae

Anatea Berland, 1927 (one sp.)

Fam. Pisauridae

Bradystichus Simon, 1884 (five sp.)

Fam. Pseudestax Rainbow, 1915 (five sp.)

Fam. Miturgidae (Zorinae)

Fam. Zoroides Berland, 1924 (one sp.)

Fam. Salticidae

Corambis Simon, 1901 (two sp.),

Lystrocteisa Simon, 1884 (one sp.),

Rhondes Simon, 1901 (one sp.),

Pahoroides Simon, 1901 (one sp.),

*Rainbow, 1915 (five sp.)

New Zealand.

From **New Zealand** have been recorded one endemic family (Huttoniidae), one subfamily (Pahorinae), 93 end. genera and at least 93% of the species of spiders are endemic:

Fam. Huttoniidae: Huttonia Pickard-Cambridge),

Fam. Hexathelidae: Hexathela Ausserer, **Porrorhele** Simon)

Fam. Anapidae: Novanapis Platnick et Forster, **Paranapis** Platnick et Forster, Zealanapis Platnick et Forster

Fam. Pararchedaeidae: Forstrarchaea Rix, **Pararhele** Forster

Fam. Cycloctenidae: Plectophanes Bryant, **Toxopsoides** Forster, **Uzakia** Koçak et Kemal, **Cantuarea** Hogg

Fam. Gradungulidae: Gradungula Forster, **Piana** Forster, **Spelugula** Forster Fam. Orsolabidae: **Anopsolobus** Forster et Platnick, **Ascuta** Forster, **Bealeuya** Forster et Platnick, **Dugdalea** Forster et Platnick, **Duripelta** Forster, **Maoriatica** Forster et Platnick, **Oringia** Forster et Platnick, **Paralobus** Forster et Platnick, **Pounamuella** Forster et Platnick, **Subantarctica** Forster, **Tangata** Forster et Platnick, **Tautukua** Forster et Platnick, **Turretia** Forster et Platnick, **Waiporia** Forster et Platnick, **Wiltonia** Forster et Platnick

Fam. Mecysmauchenidae: Aotearea Forster et Platnick, **Zearchaea** Wilton, **Parapu** Forster, **Pua** Forster, Forstrarchaea Rix, Tekeloides Forster, **Waitkerra** Opell, **Nomana** Forster, **Pahora** Forster, **Pahoroides** Forster, **Runa** Forster, **Wairua** Forster, **Meringa** Forster, **Mangareia** Forster et Wilton, **Huka** Forster et Wilton, **Mahura** Forster et Wilton, **Neoraphia** Forster et Wilton, **Orama** Forster et Wilton, **Oromia** Forster et Wilton, **Orepuhia** Forster et Wilton, **Paramyro** Forster et Wilton, **Porotaka** Forster et Wilton, **Taraaru** Forster et Wilton, **Tuapoka** Forster et Wilton, **Anhunga** Forster et Wilton, **Maloides** Forster et Wilton, **Muritaia** Forster et Wilton, **Pakeha** Forster et Wilton, **Paravoka** Forster et Wilton, **Poaka** Forster et Wilton, **Gasparia** Forster et Wilton, **Gohia** Forster et Wilton, **Goyenia** Forster et Wilton, **Hapona** Forster, **Helsinia** Forster, **Hulua** Forster et Wilton, **Lamina** Forster, **Mangareia** Forster, **Matachia** Dalmas, **Mesudus** Özbekmen, **Neozythra** Forster et Wilton, **Notomatachia** Forster, **Nuisana** Forster et Wilton, **Otago** Forster, **Panoa** Forster, **Rapua** Forster, **Toxopsoides** Forster et Wilton, **Tuakana** Forster

Fam. Dictynidae: Paradictyna Forster, **Viridictyna** Forster, **Karanga** Forster, **Poroides** Forster, **Forstertyna** Harvey, **Megadictyna** Dahl, **Haurokoa** Koçak et Kemal, **Zealolichen** Forster et Wilton, **Pacificana** Hogg, **Kaitawa** Forster, **Matua**
Forster, Nauhea Forster, Notiodrassus Brugyant, Zelanda Özdiķmen.

Recently an overview of New Zealand spiders has been published by Paquin, Vink & Duperré (2010). Best characterized is the spider fauna of New Zealand by the book review of Duffey (2010, Newsr. Br. Arachnol. Soc., 119): “Britain and New Zealand are comparable in area but the former has 658 species while the latter has 1126 described and another 536 awaiting description, making a present total of about 1662 species in 236 genera and 57 families. As new species are still being found the authors think the true total could be about 2000. One can't help feeling this is a conservative estimate because even the well-worked fauna in Britain, which recorded a total of 584 in 1958, has since added another 74 species. The best known New Zealand arachnologist, R.R. Forster, though the New Zealand total could be as much as 2500 species. Whether 2000 or 2500, the fascinating question is why New Zealand has such a rich fauna when no country in Europe reaches even the lower figure. France, one of the largest, is two and half times the area [of NZ], but has a total of 1569 sp. (Le Peru 2007). The family Linyphiidae is the largest in New Zealand but only 12% of the total and they are all in the subfamily Linyphiinae. Endemic Erigoninae apparently do not exist as all known species are introduced. In Britain about 40% of the spider fauna are Linyphiidae, of which over 70% are Erigoninae”.

The endemism of New Zealand spiders is amazing: one family, one subfamily and at least 93 genera and 93% of species. In total, in New Zealand are recorded 57 families of spiders.

Opilioacarida

In Australia are found unidentified Opilioacarida (Walter & Proctor, 1998).

Holothyrida (Beron, 2014).

Australia. Domrow (1955), Van der Hammen (1961, 1983), Womersley (1935);

New Guinea. Thorell (1882), Beron (2014), Canestrini (1897), Lehtinen (1981, 1995), Van der Hammen (1983);

New Zealand. Womersley (1935)

Endemic family (Allothyridae) for Australia and New Zealand (?! the same species Allothyrus (?) australasiae (Womersley).

In Australia also the endemic species Allothyrus constrictus Domrow, 1955.

In New Guinea are found 11 sp. of another family (Holothyridae), out of all 29 species in the order Holothyrida (New Guinea looks like the center of speciation of these strange Arachnids). All species are endemic, so are the genera Hammenius Lehtinen and Thonius Lehtinen. Hammenius niger (Thon) lives on Silhouette Isl. (the Seychelles), a highly interesting distribution for these conservative animals.

In New Caledonia live two genera of Holothyrida, one of them endemic (Haplothythus Lehtinen – two sp.), another one (Lindothythus Lehtinen) is shared with Lord Howe Is. (Berlese, 1923, Lehtinen, 1995). On New Caledonia endemic sp. is Lindothythus rubellus Lehtinen, 1995. Both genera belong to the family Holothyridae and not to the Allothyridae, known from Australia and New Zealand. The New Guinean genera also are not represented in New Caledonia. The same observation is valid for the Holothyrida of Lord Howe Island (Lindothythus elongatus Lehtinen, 1995).

Parasitiformes (some Ixodida and Mesostigmata)

Ixodida

Acariformes: Haliday (1998), Spain & Luxton (1971)

Sarcoptiformes

Oribatida: Hammer (1966, 1967, 1968), Coloff & Cameron (2014). Thanks to the research of M. Hammer, from New Zealand have been listed at least 50 families of Oribatida (Spain & Luxton, 1971)

Trombiformes (some).

Australia. Beron (2008), Domrow & Lester (1985), Haliday (1998); New Caledonia. Southcott (1966);

Prostigmata

Fam. Smarididae – end. genus Sphaerotarsus

Womersley, 1936

Fam. Erythraeidae

Endemic genera in Australia: Erythrellus

End. species in New Caledonia: Charletonia rageaui Southcott, 1966
Endemic genera in New Zealand: Neosmaris Hirst, 1926, Taranakia Southcott, 1988, Ramsayella Zhang, 2000

Characteristics of the areas analysed in this article

Kingdom Notogaea – no endemic orders or suborders among Arachnida
Region Australia
Palpigradi – some brought from Europe, one local (endemic?) sp.
Solifugae – missing
Amblypygi – fam. Charinidae (Charinus Simon)
Uropygi – not found in Australia
Schizomida – fam. Hubbardiidae (Apozomus Harvey, Attenuizomus Harvey, Bregnolizomus Harvey, Draculoides Harvey, Ovozomus Harvey, Jullatenius Harvey, Notozomus Harvey, Paradraculoides Harvey et al.

Scorpiones – Endemic family is Urodacidae, end. genera – Urodacus Peters with 19 species, Aops Volschenk et Prendini, Isometroides Keyserling and Cercophonius Peters (Australia and Tasmania).

Pseudoscorpiones – no endemic families; 150 sp., 17 fam. Endemic genera of pseudoscorpions in Australia (without Tasmania) are: fam. Olpiidae – Austrohorus Beier (one sp.), Linnaeopilium Harvey et Leng (one sp.), fam. Cherifideridae – Australochelifer Beier (one sp.), fam. Chernetidae – Conicochernes Beier (four sp.), Mararchernes Harvey (three sp.); in Tasmania: Neopseudogarypus Morris.

Opiliones – no endemic families

Cyphophthalmi – fam. Pettalidae (two genera, endemic in Queensland (Austropurcellia) and Western Australia (Karrippurcellia) Giribet).

Laniatores – fam. Triagenonychidae (endemic: Breviacanthina Kauri, Callihamina Roewer, Callihanus Roewer, Clunia Forster, Heteronuncia Roewer, Holonuncia Forster, Perthanca Forster, Yatala Roewer, Conoculus Forster, Dingupa Forster, Dipristes Roewer, Assamiidae, Samoidea, Zalmoidea (= Stygnoleptinae)

Dysnoi – fam. Acropsopilionidae (Acropsopilio Silvestri)

Araneae – in Australia 73 fam. with 237 end. genera; in Tasmania two endemic subfamilies (Hickmaniinae, Plesiothelinae)

Opilioacarida – one indetem. recorded
Holothyrina – fam. Holothyridae (Holothyris van der Hammen, Australothyris van der Hammen)

Other Acari – many endemic genera

Region New Zealand

Very unbalances fauna. Seven orders of Arachnida are missing, the remaining are Pseudoscorpiones (67 sp.), Opiliones (111 sp.), Araneae (1662 sp.), Holothyrina (one sp.), Ixodida (11 sp.), Mesostigmata, Sarcoptiformes and Trombidiiformes. Particularly well is represented the order Araneae.

Palpigradi – missing
Solifugae – missing
Amblypygi – missing
Uropygi – missing
Schizomida – missing
Scorpiones – missing
Pseudoscorpiones – no endemic families; 67 sp. of 27 genera and eight families. Endemic genera: Mairichthonius Chamberlin, Sathrochthoniella Beier, Tyroponchthoniella Beier, Nelsoninus Beier, Apatochernes Beier (together with Campbell Isls, Snares Isls, Auckland Isls, Chatam Isls, Norfolk Isl.), Heterochernes Beier.

Opiliones – one endemic family

Cyphophthalmi – three endemic genera (Rakaia Hirst, Aoraki Boyer et Giribet, Neopurcellia Foster) from the family Pettalidae (in total 21 sp.)

Laniatores – endemic family:
Synthetonychidae (Synthetonychia Forster), Triagenonychidae (Hedwiga Roewer, Hendea Roewer, Hendeola Forster, Metanuncia Roewer (Stewart Island), Neoununcia Roewer, Prasma Roewer, Prasmiola Forster, Psalenoba Roewer, Trigria Forster, Algida Hogg, Cenelia Roewer, Musicola Forster, Pristobunus Roewer, refam.
Sorensenellinae (Karamea Forster, Sorensenella Pocock);

Eupnoi – fam. Neopilionidae (incl. Monoscutidae), Mangatangi Taylor (nine sp.), Pansopilus Simon (nine sp.); Monoscutinae (end. subfamily): Achiasta Forster, Monoscatum Forster, Templar Taylor) (New Zealand, Auckland, Snares, Campbell Islands)

Dysnoi – fam. Caddidae (Acropsopilio Silvestri)

Araneae: one endemic family (Huttoniidae),
one subfamily (Pahorinae), and at least 93 endemic genera of spiders.

Opilioacarida – missing
Holothyrida – no endemic families or genera: Allothyrus van der Hammen (one sp., in common with Australia)
Ixodida – no endemic genera. Fam. Ixodidae and Argasidae (11 sp., four endemic)
Other Acari: no endemic families.
Trombidiformes
Prostigmata – fam. Erythraeidae (Neosmaris
Hirst, Taranakia Southcott, Ramsayella Zhang)

Papuan Area (New Guinea, Bismarcks, Salomon Islands)
Arachnida: no endemic families
Palpigradi – fam. Eukenoeniidae (Eukenoenia cf. lawrencei and Koeneniodes cf. frondiger)
Solifugae – missing
Amblypygi – fam. Charinidae (Charinus
Simon, Sarax Simon – New Guinea), Charontidae (Charon Karsch – New Guinea)
Schizomida – fam. Hubbardiidae (Apozomus Harvey, Bamamourus Harvey – New Guinea)
Scorpionidae – In New Guinea (incl. Aru and Bougainville) are known six widespread species of the genera Isometrus, Lychas (Buthidae), and Liocheles (Hormuridae).
Opiliones
Cyphophthalmi – fam. Stylocellidae (two sp. of Stylocellus on Bird’s Head of New Guinea)
Laniatores – fam. Assamiidae, Epedanidae, Podoctidae (incl. Erecanainae and Ibaloniinae), Zalmoxidae (= Stygnoleptinae)
Dyspnoi – missing
Araneae – ca. 200 sp., no endemic families
Holothyrida – fam. Holothyridae (Hammenius Lehtinen, Leiothyrus van der Hammen)(all from New Guinea)

Opilioacarida – missing
New Caledonia
Palpigradi – present, unidentified
Solifugae – missing
Amblypygi – fam. Charinidae (Charinus), only endemic species and subspecies
Uropygi – missing
Schizomida – Hubbardiidae indet.
Scorpionidae – two species of Liocheles (Hormuridae)
Pseudoscorpiones – families Chthoniidae, Tridenchthoniidae, Syarinidae, Cheiridiidae, Garypinidae, Geogarypidae, Atemnidae, Opliidae, Sternophororidae, Cheliferidae, Chernetidae, Withiidae
Opiliones
Cyphophthalmi – one endemic fam.
Troglosironidae (13 sp.)
Laniatores – fam. Assamiidae, Epedanidae, Podoctidae (incl. Erecanainae and Ibaloniinae), Zalmoxidae (= Stygnoleptinae)
Dyspnoi – missing
Araneae – 33 families: Anapidae, Barychelidae, Dipluridae, Desidae, Pararchaeidae, Lamponidae, Theridiidae, Pisauidae, Zoridae, Salticidae, Scytodidae, Tetablemmidae, Telemidae, Segestriidae, Onoipidae, Mimetidae, Deinopidae, Uloboridae, Mysmenidae, Linyphiidae, Tetragnathidae, Araneidae. Until 1993 have been recorded spiders of 112 genera and 194 sp. Endemic genera: Stenygroecercus Simon (Dipluridae), Caledanapid Platnick et Forster, Mandanapid Platnick et Forster, Montanapid Platnick et Forster, Caledothele Raven (Anapidae), Barycheloides Raven, Barychelus Simon, Encycrocyta Simon (32 sp.), Natgeogia Raven, Orchord Raven, Questocyra Raven (Barychelidae), Canala Gray (Desidae), Centrocaly Platnick (Lamponidae), Anatea Berland (Theridiidae), Pseudostimulus Rainbow (Pisauridae), Zoroides Berland, 1924 (Zoridae), Corambis Simon, Lystroteisa Simon, Rhondes Simon (Salticidae)
Holothyrida – fam. Holothyridae (two genera, one of them endemic
(Haplothyrus Lehtinen – two species), the other (Lindothyrus Lehtinen) is shared with Lord Howe Is.
Opilioacarida – missing

Conclusion

The level of representation of Arachnida in the classical Notogeia (with Papuan area, but excluding Patagonia) is much lower than the level in the
vertebrates, with their endemic subclasses, orders and suborders. Even in the most isolated area (New Zealand) there are no endemics of very high rank. Here are the endemisms above genus:

Australia (cont.): one endemic family of Scorpions (Uroacaridae)

Tasmania: only endemic subfamilies of spiders (Plesiothelinae and Hickmanniinae)

New Guinean area: no endemics above genus

New Caledonia: one endemic family of Opiliones (Troglosorioidae)

New Zealand: one endemic family of spiders (Huttoniidae) and one of Opiliones (Synthetonychiidae)

References

BEIER M. 1948. Über Pseudoscorpion der Australischen Region. – Eos, 24: 525-562.

BOYER S.L., GIRIBET G. 2008. Welcome back New Zealand: regional biogeography and Gondwanan origin of three

Harvey M. 1992. The Schizomida (Chelicerae) of Australia. – Invertebrate Taxonomy, 6: 77-129.

Comparative arachnogeographical analysis of Australia, Papuan Area, New Caledonia and New Zealand

Harvey M. S., Mei Chen Leng. 2008. The first troglobromorphic pseudoscorpion of the family Olpidiidae (Pseudoscorpiones), with remarks on the composition of the family. – Records of Western Australian Museum, 24: 387-394.

Hedley C. 1894. The faunal regions of Australia. – Australian Association Advance of Science, Report 5: 444-446.

Juberthie Ch. 1988a. Les Opilions Cyphophthalmes: biogeogra-

Jubertihe Ch. 1988b. Un nouvel opilion Cyprophalhalme aveugle d'Australie: Austroporecella gen. nov., scoparia n.sp. – Mémoires de Biopological, 15: 133–150.

Neal V. E., Trewick S. A. 2008. The age and origin of the Pacific islands: a geological overview. – Philosophical Transactions
of Royal Society, B 363: 3293-3308
Rix M.G., Harvey M.S. 2010. The first pararchaeid spider (Araneae: Pararchaeidae) from New Caledonia, with a discussion on spinneret spigots and egg sac morphology in Ozarchaeidae. – Zootaxa, 2414: 27-40.

Author’s address:

Petar Beron, National Museum of Natural History, 1 Tsar Osvoboditel Blvd, Sofia 1000, Bulgaria. E-mail: beron@mail.bg
Сравнителен арахногеографски анализ на фауните на Австралия, Папуаския подрайон, Нова Каледония и Нова Зеландия

Петър Берон

(Резюме)

Арахногеографски анализ на всички разреди от клас Arachnida в Австралия (вкл. Тасмания), Нова Гвинея, Нова Каледония, о. Лорд Хоу и Нова Зеландия. Целта е да се очертат представянето на различните разреди в отделните територии и да се види арахногеографската подкрепа на едно или друго ниво на ситуирането на териториите в зоогеографското поделяне на Нотогея и на света. Заключението е, че нивото на отделните групи Arachnida в класическата Нотогея (с Папуаския район, но без Патагония) е много по-ниско от нивото на гръбначните, с тяхните ендемични подкласове, разреди и подразреди. Даже в най-изолираната част няма ендемични арахниди от много висок ранг.

Ето нивото на ендемизъм, по-високо от род:
- Австралия (континентална част): едно ендемично семейство скорпиони (Urodacidae)
- Тасмания: само ендемични подсемейства паяци (Plesiothelinae и Hickmanniinae)
- Новогвинейски район: няма ендемични арахниди по-високо от род.
- Нова Каледония: едно ендемично семейство опилиони (Troglosironidae)
- Нова Зеландия: едно ендемично семейство паяци (Huttoniidae) и едно ендемично подсемейство (Pahorinae). При опилионите (енд. сем. Synthetonychiidae), както и едно ендемично подсемейство (Monoscutinae).