História
naturalis bulgarica

КНИТА 15, СОФИЯ, 2002

ВЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ
НАЦИОНАЛЕН ПРИРОДОНАУЧЕН МУЗЕЙ

СЪДЪРЖАНИЕ

Чавдар КАРОВ, Илия ДИМИТРОВ - Каталог на минералните видове в Националния природонаучен музей, София (част 1). Самородни елементи, суфици и сулфосоли, оксици и кислородци, халогеници (англ., рез. бълг.) .. 5

Благой ГРУЕВ - За понтийския фаунистичен елемент в България (бълг., рез. англ.) .. 31

Апостол АПОСТОЛОВ - Хармагнукогу от подземните вода на Франция 5. Описване на една нова скулптурана от род Elaphoidella sensu Apostolov, 1985, Elaphoidella brevicaudata n. sp. и някои бележки върху вида Elaphoidella cf. leruthi Chappuis, 1937 (френ., рез. бълг.) 41

Стояче АНДРЕЕВ - Три нови вида от рода Cordioniscus и род Trichoniscus (Isopoda: Oniscidea) и нови данни за разпространението на сухоземните изоподи в България (френ., рез. бълг.) 55

Петър БЕРОН - Зоологически резултати от Бруманска спелеоложична експедиция в Панър Нова Гвинея 1975. 11. Acariformes (Prostigmata): Smarididae (Trichosmaris papua sp.n.) (англ., рез. бълг.) ... 73

Павел СТОЕВ - Скумъторуме (Chilopoda: Scutigeromorpha) в колекцията на Националния природонаучен музей (англ., рез. бълг.) 79

Борислав ГЕОРГИЕВ - Cymindis (Paracymindis) beronii B. Guergueriev, 2000 - нов синоним на Cymindis (Paracymindis) mannerheimi Gebler, 1843 (Coleoptera: Carabidae) (англ., рез. бълг.) 87

Борислав ГЕОРГИЕВ, Ян РУЖИЧКА - Ревизиран списък на българските бръмбари-мършояди (Coleoptera: Silphidae) (англ., рез. бълг.) .. 89

Васила ЙОРДАНОВА - Калпинку (Coleoptera: Coccinellidae) от Република Македония, Албания, Гърция и Турция с ревизиран списък на видовете от Балканския полуостров (нем., рез. бълг.) 113
Красимир КУМАНСКИ, Фюзун СИПАХИЛЕР - Списък на ручейниците (Insecta: Trichoptera), събрани от български зоолози в Турция (англ., рез. бълг.) 127
Здравко ХУБЕНОВ - Технологични проблеми, свързани с мигама Dreissena polymorpha в ТЕЦ "Марица Изток" 2 (бълг., рез. англ.) 139
Боян П. ПЕТРОВ, Светлана ХРИСТОВА, Христо ХРИСТОВ - Първа находка на komeukama змия (Telescopus fallax Fleischmann, 1831) (Reptilia: Serpentes) в Източните Рогуни, България (англ., рез. бълг.) 143
Петър БЕРОН - Върху някои сови (Aves: Strigidae) във високите части на Пирин и високите параситни мухи (Diptera: Hippoboscidae) (англ., рез. бълг.) 147
Васил ВУТОВ, Димитър ДИМИТРОВ - Нови данни за хорологията на високите растения от различни ботанически райони на България (бълг., рез. англ.) .. 151

Събития и дати

Димитър НАНКИНОВ - Кнуд Андерсен и неговите проучвания върху българската фауна (бълг., рез. англ.) .. 157

Кратки бележки

Стойан БЕШКОВ - Изследвания върху пеперудната фауна на парка "Друмитор" в Черна гора (бълг.) .. 30
Златозар БОЕВ - Международен проект "Fauna Europaea" и участие на България в него (бълг.) .. 54
Павел СТОЕВ - Българско херпетологично дружество - първата неправителствена организация за защита на българската херпетофауна (бълг.) 86
Алекси ПОПОВ - Камалог и определителни таблици на стоможките от клас Chilopoda в България от Павел Стоев (бълг.) 138
Ян БУИС, Теодора ИВАНОВА - Среща на изследователите на бозайници в Източни Рогун (бълг.) .. 142
Алекси ПОПОВ - Сто години от смъртта на основателя на първото Българско ентомологично дружество Христо Пикулев (бълг.) .. 150
Венцеслав ПЕТКОВ - Второ находище на балкански гекон (Cyrtodactylus kotschyi danilewskii Strauch, 1887) в Русенско (бълг.) .. 156
Петър БЕРОН - Природонаучният музей на Македония (бълг.) .. 163
CONTENTS

Chavdar KAROV, Ilia DIMITROV - A catalogue of the mineral species in the National Museum of Natural History, Sofia (Part 1) Native elements, Sulphides and Sulphosalts, Oxides and Hydroxides, Halogenides (In English, summary in Bulgarian) 5

Blagoy GRUEV - About the Pontic faunistic element in Bulgaria (In Bulgarian, summary in English) ... 31

Apostol APOSTOLOV - Copépodes harpacticoides souterraines de France 5. Description d’un nouveau stygobie du genre Elaphoidella sensu Apostolov, 1985, Elaphoidella brevicaudata n. sp. et quelques remarques sur l’espèce Elaphoidella cf. leruthi Chappuis, 1937 (In French, summary in Bulgarian) .. 41

Stoitze ANDREEV - Trois nouvelles espèces des genres Cordioniscus et Trichonisicus (Isopoda: Oniscoidea) et nouvelles données sur les Isopodes terrestres de la Bulgarie (In French, summary in Bulgarian) 55

Petar BERON - Zoological Results of the British Speleological Expedition to Papua New Guinea 1975. 11. Acariformes (Prostigmata): Smarididae (Trichosmaris papuana sp. n.) (In English, summary in Bulgarian) 73

Pavel STOEV - The scutigeromorphs (Chilopoda: Scutigeromorpha) in the collection of the National Museum of Natural History, Sofia (In English, summary in Bulgarian) .. 79

Borislav GUÉORGUIEV - Cymindis (Paracymindis) beroni B. Guéorguiev, 2000 - a new synonym of Cymindis (Paracymindis) mannerheimi Gebler, 1843 (Coleoptera: Carabidae) (In English, summary in Bulgarian) 87

Borislav GUÉORGUIEV, Jan RŮŽIČKA - Check list of Bulgarian carrion beetles (Coleoptera: Silphidae) (In English, summary in Bulgarian) .. 89

Vassila JORDANOVA - Neue Angaben über Marienkäfer (Coleoptera: Coccinellidae) aus Republik Mazedonien, Albanien, Grichenland und Türkei, mit eine Revisionsliste der Arten der Balkanhalbinsel (In German, summary in Bulgarian) .. 113

Krassimir KUMANSKI, Füsum SIPAHILER - List of caddisflies (Insecta: Trichoptera) collected by Bulgarian scientists in Turkey (In English, summary in Bulgarian) ... 127

Zdravko HUBENOV - Technological problems concerning Zebra mussel Dreissena polymorpha in MARITSA-EAST 2 TPP (In Bulgarian, summary in English) ... 139

Boyan P. PETROV, Svetlana HRISTOVA, Hristo HRISTOV - First record of the Cat snake Telescopus fallax Fleischmann, 1831 (Reptilia: Serpentes) in the Eastern Rhodopes Mt., Bulgaria (In English, summary in Bulgarian) ... 143
Petar BERON - On some owls (Aves: Strigidae) in the high parts of Pirin (SW Bulgaria) and their parasitic flies (Diptera: Hippoboscidae) (In English, summary in Bulgarian) ... 147

Vassil VUTOV, Dimitar DIMITROV - New data for the distribution of vascular plants in different botanical regions of Bulgaria (In Bulgarian, summary in English) ... 151

Events and anniversaries

Dimitar NANKINOV - Knud Andersen and his studies of Bulgarian fauna (In Bulgarian, summary in English) ... 157

Short notes

Stoyan BESHKOV - Investigations on the butterfly fauna of the Durmitor N.P., Montenegro (In Bulgarian) ... 30

Zlatozar BOEV - The Bulgarian participation in the international project "Fauna Europaea" (In Bulgarian) ... 54

Pavel STOEV - Bulgarian Herpetological Society - The first Non-Governmental organization for protection of the Bulgarian herpetofauna (In Bulgarian) ... 86

Alexi POPOV - A catalogue and key to the centipedes (Chilopoda) of Bulgaria by Pavel Stoev (In Bulgarian) .. 138

Jan BUYS, Teodora IVANOVA - Workshop on Mammals in the Eastern Rhodopes (In Bulgarian) ... 142

Alexi POPOV - One hundred years since the death of the founder of the first Bulgarian entomological society Christo Pigulew (In Bulgarian) ... 150

Ventseslav PETKOV - Second find of Cyrtodactylus kotschyi danilewskii Strauch, 1887 in the Rousse region (In Bulgarian) 156

Petar BERON - The Natural History Museum of Macedonia (In Bulgarian) ... 163
A catalogue of the mineral species in the National Museum of Natural History, Sofia (Part 1) Native elements, Sulphides and Sulphosalts, Oxides and Hydroxides, Halogenides

Chavdar KAROV, Ilia DIMITROV

Abstract. The new classified catalogue of mineral species is based on the systematics of Kostov (1993). It comprises all specimens registered in the Museum until 2001. Part 1 includes mineral species from the first four mineral classes: native elements, Sulphides and Sulphosalts, Oxides and Hydroxides, and Halogenides. Here 238 species, 10 varieties, and 5 secondary species are presented.

Key words: Catalogue, mineral species, native elements, sulphides, sulphosalts, oxides, hydroxides, halogenides, National Museum of Natural History

In 1902 Kurt Kamlah, grandson of Herman Angerchtain, a German merchant from Hamburg, made a present to the National Museum of Natural History (Museum of His Royal Highness Prince Ferdinand I at that time, founded 13 years earlier in 1889 by Prince Ferdinand I). The gift contained a rich collection of minerals. This set the beginning of the mineralogical section of the Museum. The collection included 724 specimens, which were collected during the second half of the 19th century. Most of the specimens derived from ore deposits in Europe - Andreasberg, Freiberg, Pribram, Transylvania, Idria, etc. This first collection and several smaller collections were described later in the first printed Museum Catalogue by the court dentist and outstanding geologist - mineralogist Dr. Wheeler. He used the sixth edition of the mineral
systematics of DANA (1901) for compiling the work (WHEELER, 1907). Dr Wheeler himself collected and added the first several specimens from Bulgaria to the mineral collection.

The exploitation of Bulgarian ore deposits started in the beginning of 20th century, which led to an increase in the number of specimens from Bulgaria. A mineralogical - geological exposition was opened in the Museum halls in October 1920 (BURESCH, 1953). After 1950 the Mineralogical collection was enriched with minerals from all over the world. The mineralogical collections were moved several times during the World War II air raids in 1943 and later in the 1950s due to the transfer of the Mineralogical department to the Geological Institute. Part of the old mineral specimens was damaged, lost or their original labels were mixed up.

Most of the new specimens obtained in the period 1950 - 1970 served as a basis of the new mineralogical exposition, opened after the restoration of the Museum in 1974 as an independent unit within the Bulgarian Academy of Sciences (PETRUSSENKO, 1989).

Nowadays the mineralogical collection numbers about 14 000 specimens collected from all over the world. The specimens are grouped in three funds: basic fund, fund for exchange and fund of research materials. Moreover, the collection includes meteorites and casts of meteorites - 7 specimens, about 1 500 rock samples and 40 precious and semi-precious stones of high quality.

Mineral specimens and collections of special interest are:
- The fullest set of mineral species, discovered and described for the first time in Bulgaria with Bulgarian names: the holotypes of strashimirite, kostovite, hemusite, ardaite, orpheitite, balkanite, bonchevite (?), vasilite;
- The richest mineral collection from Madan ore region - 1082 specimens of unique galena, sphalerite, quartz and calcite crystal druses;
- The biggest collection (110 specimens of total weight about 2 tons) from "Surneshko kladenche" mine, Burgas ore region. It contains plate calcite crystals and druses of large size (some crystals reach dimensions of 35 cm) (KAROV, 1996);
- The largest crystals ever found in Bulgaria: galena - # (museum number) 1253 from mine "Fabrika", edge 12 cm; emerald #2507, from Urdini Lakes, Rila mountain, 9x2 cm; amethyst - #907, from Teshevo village, S. Pirin mountain, 20x11 cm; kaolinite - #429, from Glavanatsi village, Madzharovo region, 14 mm; columbite - #1036, from Vishteritsa quarry, West Rhodopi mountains, 20x17 cm; muscovite - # 735 Dolen village, Zlatograd region 14x31 cm; pyrite - #6928, from Madan ore region, 13.5x13.5x9 cm (KAROV, 1996).

The classification in the catalogue is based on the systematics of KOSTOV (1993) and some other manuals like LAZARENKO & VINAR (1975), FLEISCHER (1991), MANDARINO (1999), EVSEEV (2000), KOSTOV & MINCEVA-STEFANOVA (1981), PETRUSSENKO (1991), ESPENSHADE & MORRISON (1983) and some Internet sites. The specimens from the basic fund only are presented in this catalogue. It includes all specimens registered in the Museum until 2001. The last catalogue number is 7893.
The new Museum mineral catalogue will be issued in three parts. Part 1 includes mineral species, belonging to the first four mineralogical classes according to the systematics of KOSTOV (1993): Native elements, Sulphides and Sulphosalts, Oxides and Hydroxides, and Halogenides. Two hundred thirty eight species, 10 varieties, and 5 secondary species are presented here.

Legend:
Column: **Mineral classes, sub-classes, assemblages, groups, species and varieties**
- Names of mineral species are given by FLEISCHER (1991), afterwards their Bulgarian translation is given in brackets.
- All mineral species are in bold. For example: **Microlite**
- The mineral varieties are in bold and italic. For example: **Yttromicrolite**
- Groups of not precisely determined minerals are in square brackets, bold and italic. For example: *[Indetermined secondary Mn mineralizations and concretions]*
- Mineral species or variety followed by "II" means species or variety of secondary importance in the sample. For example: **Birnessite II, Lapieite II**

Column: **Localities, region, country**
- The list of localities follows the scheme; it always begins with localities in Bulgaria, followed by localities in other European countries, Asia, Africa, North and South America, Australia and Antarctida.
- All localities in one region are separated by commas.
- All localities in one country are separated by semicolons.
- Countries are separated by dots.
Table 1
A catalogue of the mineral species in the National Museum of Natural History, Sofia (Kostov, 1993) (part one)

<table>
<thead>
<tr>
<th>Mineral classes, sub-classes, assemblages, groups, species and varieties</th>
<th>pieces</th>
<th>Localities, region, country</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 1. NATIVE ELEMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2. Nickel - Iron group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (Желизо)</td>
<td>4</td>
<td>Ozernaya Mt., Siberia, (Russia). Nivfag (Greenland).</td>
</tr>
<tr>
<td>Nickel (Никел)</td>
<td>1</td>
<td>New Caledonia, Pacific Ocean (France).</td>
</tr>
<tr>
<td>Awaruite (Аваруит)</td>
<td>4</td>
<td>Heazlewood, Tasmania (Australia).</td>
</tr>
<tr>
<td>1.4. Gold group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Amalgam (Амалгама)</td>
<td>1</td>
<td>Aspen, Colorado (USA).</td>
</tr>
<tr>
<td>Lead (Олово)</td>
<td>1</td>
<td>Langban (Sweden).</td>
</tr>
<tr>
<td>Silver (Сребро)</td>
<td>8</td>
<td>Sedmochislenitsi dep., Vtatsa reg. (Bulgaria). Andreasberg; Erzgebirge; Hartenstein, Saxony (Germany). Pribram (Czech Republic). Japan.</td>
</tr>
<tr>
<td>Auricupride (Аурнаурип)</td>
<td>1</td>
<td>Karabash, S Ural (Russia).</td>
</tr>
<tr>
<td>1.5. Mercury group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury (Живак)</td>
<td>3</td>
<td>Almaden (Spain).</td>
</tr>
<tr>
<td>2. Semi - metals and nonmetals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Bismuth group</td>
<td>2. Bismuth (Бисмут)</td>
<td>2.2. Antimony (Антимон)</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>

2.4. Carbon group

<table>
<thead>
<tr>
<th>Rosicklite (Росицкуум)</th>
<th>Diamond (Диамант)</th>
<th>Graphite (Графит)</th>
</tr>
</thead>
</table>

2. Carbides, Nitrides, Phosphides and Silicides

<table>
<thead>
<tr>
<th>Moissanite (synthetic)</th>
<th>Schungite (Шунгит)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 2, SULPHIDES AND SULPHOSALTS</td>
<td></td>
</tr>
</tbody>
</table>

1. Metallic

<table>
<thead>
<tr>
<th>Millerite (Милерит)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kladno (Czech Republic). Glamordan (England).</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>1.2.2. Planar</td>
</tr>
<tr>
<td>1.2.2.1. Parkerite group</td>
</tr>
<tr>
<td>- Lapieite II (Lanueum II)</td>
</tr>
<tr>
<td>1.2.2.3. Mackinawite - Vallerite group</td>
</tr>
<tr>
<td>Vallerite (Валерий)</td>
</tr>
<tr>
<td>Yushkinite (Юшкунит)</td>
</tr>
<tr>
<td>1.2.3. (Pseudo) isometric</td>
</tr>
<tr>
<td>1.2.3.1. Orcelite - Heazlewodite group</td>
</tr>
<tr>
<td>Heazlewodite (Хаузловит)</td>
</tr>
<tr>
<td>1.2.3.2. Pentlandite group</td>
</tr>
<tr>
<td>Pentlandite (Пентланит)</td>
</tr>
<tr>
<td>1.2.3.3. Nickeline - Pyrrhotite group</td>
</tr>
<tr>
<td>Breithauptite (Брайхотит)</td>
</tr>
<tr>
<td>Nickeline (Никели)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Westerveldite (Вестервельдит)</td>
</tr>
<tr>
<td>Pyrrhotite (Пирротит)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Troilite II (Тропилит II)</td>
</tr>
<tr>
<td>1.2.3.4. Linnaeite group</td>
</tr>
<tr>
<td>Linnaeite (Линнеум)</td>
</tr>
<tr>
<td>Siegenite (Зиженит)</td>
</tr>
<tr>
<td>Carrollite (Каролит)</td>
</tr>
<tr>
<td>Greigite (Грижит)</td>
</tr>
<tr>
<td>1.2.3.5. Lollingite group</td>
</tr>
<tr>
<td>Rammelsbergite (Рамельсбергит)</td>
</tr>
<tr>
<td>Pararammelsbergite (Парапрамельсбергит)</td>
</tr>
<tr>
<td>Safflorite (Саффлорит)</td>
</tr>
<tr>
<td>Löllingite (Лоллингит)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1.2.3.6. Pyrite - Marcasite group</td>
</tr>
<tr>
<td>Marcasite (Маркаэум)</td>
</tr>
<tr>
<td>1.2.3.7. Cobaltite group</td>
</tr>
<tr>
<td>Cobaltite (Кобалтини)</td>
</tr>
<tr>
<td>Gersdorffite (Гергарфим)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1.2.3.8. Arsenopyrite group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.2.3.9. Skutterudite group</td>
</tr>
<tr>
<td>Skutterudite (Ckumepiry gum)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.3. Ti-K-Mn assemblage</td>
</tr>
<tr>
<td>1.3.1. Axial</td>
</tr>
<tr>
<td>1.3.1.1. Ragunite group</td>
</tr>
<tr>
<td>Rasvumite (Rasbymum)</td>
</tr>
<tr>
<td>1.3.3. (Pseudo) isometric</td>
</tr>
<tr>
<td>1.3.3.1. Alabandite group</td>
</tr>
<tr>
<td>Alabandite (Alabandum)</td>
</tr>
<tr>
<td>1.5. Zn-Pb-Cu assemblage</td>
</tr>
<tr>
<td>1.5.2. Planar</td>
</tr>
<tr>
<td>Covellite (Kovelum)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Umangite (Умангит)</td>
</tr>
<tr>
<td>1.5.3. (Pseudo) isometric</td>
</tr>
<tr>
<td>Cuprostitite (Купроститбит)</td>
</tr>
<tr>
<td>1.5.3.2. Chalcolite group</td>
</tr>
<tr>
<td>Chalcoalite (Халкоцит)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Betekhtinite (Бемехмитум)</td>
</tr>
<tr>
<td>Briartite (Бриарпим)</td>
</tr>
<tr>
<td>Sakuraiite (Сакураитум)</td>
</tr>
<tr>
<td>Cubanite (Кубанит)</td>
</tr>
<tr>
<td>Wurtzite (Вюрцитум)</td>
</tr>
<tr>
<td>Greenockite (Гринокум)</td>
</tr>
<tr>
<td>1.5.3.5. Enargite group</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Enargite (Енаргит)</td>
</tr>
<tr>
<td>Tennantite (Тенантит)</td>
</tr>
<tr>
<td>Freibergite (Фрайбергиит)</td>
</tr>
<tr>
<td>Brand mine, Freiberg (Germany).</td>
</tr>
<tr>
<td>Renierite (Рениерт)</td>
</tr>
<tr>
<td>Kipushi, Shaba (Congo). Tsumeb (Namibia).</td>
</tr>
<tr>
<td>Sulvanite (Сулванит)</td>
</tr>
<tr>
<td>Pay-Khoy khrebet (Russia).</td>
</tr>
<tr>
<td>Germanite (Германит)</td>
</tr>
<tr>
<td>Tsumeb (Namibia).</td>
</tr>
<tr>
<td>1.5.3.7. Galena group</td>
</tr>
<tr>
<td>Galena (Галенит)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Clausthalite (Клаусталит)</td>
</tr>
<tr>
<td>Altaite (Алтэйт)</td>
</tr>
<tr>
<td>1.6. Ag-Au-Hg assemblage</td>
</tr>
<tr>
<td>1.6.1. Axial</td>
</tr>
<tr>
<td>1.6.1.1. Balkanite group</td>
</tr>
<tr>
<td>Balkanite (Балканит)</td>
</tr>
<tr>
<td>1.6.2. Planar</td>
</tr>
<tr>
<td>1.6.2.1. Krennerite group</td>
</tr>
<tr>
<td>Krennerite (Кренирит)</td>
</tr>
<tr>
<td>Sylvanite (Силванит)</td>
</tr>
<tr>
<td>Kostovite (Костовит)</td>
</tr>
<tr>
<td>Nagyagite (Нагягит)</td>
</tr>
<tr>
<td>1.6.3. (Pseudo) isometric</td>
</tr>
<tr>
<td>1.6.3.1. Argentite - Stromeyerite group</td>
</tr>
<tr>
<td>Argentite (Аргентит)</td>
</tr>
<tr>
<td>Acanthite (Аканит)</td>
</tr>
<tr>
<td>Hessite (Хессит)</td>
</tr>
<tr>
<td>Cerverelleite (Сервереллит)</td>
</tr>
<tr>
<td>1.6.3.2. Dyscrasite group</td>
</tr>
<tr>
<td>Aurostibite (Ауроститбйт)</td>
</tr>
<tr>
<td>1.6.3.3. Cinnabar group</td>
</tr>
<tr>
<td>Cinnabar (Цинабар)</td>
</tr>
<tr>
<td>Tiemannite (Тиеванит)</td>
</tr>
<tr>
<td>2. Sulphosalts</td>
</tr>
<tr>
<td>2.1. Cu-Pb-(Fe,Sn) assemblage</td>
</tr>
<tr>
<td>2.1.1. Axial</td>
</tr>
<tr>
<td>2.1.1.1. Chalcostibite group</td>
</tr>
<tr>
<td>Substance</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Emplectite</td>
</tr>
<tr>
<td>JUNOITE (ДЖУНЮИМ)</td>
</tr>
<tr>
<td>Heyrovskyite (ХЕЙРОВСКУМ)</td>
</tr>
<tr>
<td>Kobellite</td>
</tr>
<tr>
<td>Galenobismutite</td>
</tr>
<tr>
<td>Bonchevite</td>
</tr>
<tr>
<td>Eclariite</td>
</tr>
<tr>
<td>Boulangerite</td>
</tr>
<tr>
<td>Zinkenite</td>
</tr>
<tr>
<td>Robinsonite</td>
</tr>
<tr>
<td>Jamesonite</td>
</tr>
<tr>
<td>Ardaite</td>
</tr>
<tr>
<td>Gratonite</td>
</tr>
<tr>
<td>Menechinite</td>
</tr>
<tr>
<td>Berthierite</td>
</tr>
<tr>
<td>2.1.2. Planar</td>
</tr>
<tr>
<td>2.1.2.1. Jordanite</td>
</tr>
<tr>
<td>Geocronite</td>
</tr>
<tr>
<td>Jordanite</td>
</tr>
<tr>
<td>Waldsassen, Bavaria (Germany). Pribram (Czech Republic). Transbaikalia (Russia).</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Cylindrite (Πυλινάριµ)</td>
</tr>
<tr>
<td>Franckeite (Франкейм)</td>
</tr>
<tr>
<td>Lengenbachite (Ленгенвахим)</td>
</tr>
<tr>
<td>2.1.3. Pseudoisometric</td>
</tr>
<tr>
<td>2.1.3.1. Bournonite - Wittichenite group</td>
</tr>
<tr>
<td>Wittichenite (Вумихенум)</td>
</tr>
<tr>
<td>Bournonite (Бурнонум)</td>
</tr>
<tr>
<td>Seligmanite (Сецигманум)</td>
</tr>
<tr>
<td>2.1.3.2. Plagionite group</td>
</tr>
<tr>
<td>Senseyite (Семсеум)</td>
</tr>
<tr>
<td>2.2. Ag-(Pb,Ti)-Hg assemblage</td>
</tr>
<tr>
<td>2.2.1. Axial</td>
</tr>
<tr>
<td>2.2.1.1. Pavonite - Ramdohrite group</td>
</tr>
<tr>
<td>Gustavite (Гусмавум)</td>
</tr>
<tr>
<td>2.2.2. Planar</td>
</tr>
<tr>
<td>2.2.2.1. Pyrostilpnite group</td>
</tr>
<tr>
<td>Smithite (Смумсум)</td>
</tr>
<tr>
<td>2.2.2.2. Lorandite group</td>
</tr>
<tr>
<td>Lorandite (Λορανδιµ)</td>
</tr>
<tr>
<td>2.2.3. Pseudoisometric</td>
</tr>
<tr>
<td>2.2.3.1. Matildite - Freieslebenite group</td>
</tr>
<tr>
<td>Miargyrte (Миаргирпм)</td>
</tr>
<tr>
<td>Andorite (Андориум)</td>
</tr>
<tr>
<td>2.2.3.2. Pyrargyrite - Polybasite group</td>
</tr>
<tr>
<td>Pyrargyrite (Пиаргирпм)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Proustite (Προυςτιµ)</td>
</tr>
<tr>
<td>Polybasite (Полибазиум)</td>
</tr>
<tr>
<td>Pearceite (Парсеиум)</td>
</tr>
<tr>
<td>Stephanite (Смефаниум)</td>
</tr>
<tr>
<td>3. Semi - Metallic</td>
</tr>
<tr>
<td>3.1. Axial</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Bismuthinite (Бисмутинум)</td>
</tr>
<tr>
<td>Stibnite (Cтнитн=антимонум)</td>
</tr>
<tr>
<td>Wakabayashilite (Вакабайашилит)</td>
</tr>
<tr>
<td>3.2. Planar</td>
</tr>
<tr>
<td>3.2.1. Tetradymite group</td>
</tr>
<tr>
<td>Tetradymite (Тетрадимит)</td>
</tr>
<tr>
<td>3.2.2. Orpiment group</td>
</tr>
<tr>
<td>Getchellite (Гетчелит)</td>
</tr>
<tr>
<td>Orpiment (Орпимент)</td>
</tr>
<tr>
<td>Realgar (Реалгар)</td>
</tr>
<tr>
<td>4. Oxysulphides</td>
</tr>
<tr>
<td>Kermesite (Кермезит)</td>
</tr>
<tr>
<td>Sarabauite (Сарабаут)</td>
</tr>
<tr>
<td>CLASS 3. OXIDES AND HYDROXIDES</td>
</tr>
<tr>
<td>1. Metallic oxides and hydroxides</td>
</tr>
<tr>
<td>1.1. Be-Al-Mg assemblage</td>
</tr>
<tr>
<td>1.1.1. Chrysoberyl group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Spinel (Шпинел)</td>
</tr>
<tr>
<td>Hercynite (Херцинит)</td>
</tr>
<tr>
<td>Corundum (Корунд)</td>
</tr>
<tr>
<td>- Ruby (Рубин)</td>
</tr>
<tr>
<td>- Leucosapphire (Левкосапфир)</td>
</tr>
<tr>
<td>- Emery II (Шмировел II)</td>
</tr>
<tr>
<td>Diaspore (Диаспор)</td>
</tr>
<tr>
<td>Böhmite (Бьомит)</td>
</tr>
<tr>
<td>Gibbsite (Губсит)</td>
</tr>
<tr>
<td>1.1.4. Högbomite group</td>
</tr>
<tr>
<td>Högbomite (Хьогбомит)</td>
</tr>
<tr>
<td>Hibonite (Хибонит)</td>
</tr>
<tr>
<td>Magnetoplumbite (Магнетоплумбит)</td>
</tr>
<tr>
<td>1.1.5. Periclase - Brucite group</td>
</tr>
<tr>
<td>Periclase (Перуклаз)</td>
</tr>
<tr>
<td>Brucite (Брусит)</td>
</tr>
<tr>
<td>Theophrastite (Теофрасст)</td>
</tr>
<tr>
<td>Jamborite (Джамборит)</td>
</tr>
</tbody>
</table>
1.2. Fe-Mn-V assemblage
1.2.1. Magnetite - Chromite group

<table>
<thead>
<tr>
<th>Magnetite (Магнетит)</th>
<th>63</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Titanomagnetite (Титаномагнетит)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krzemionka (Poland). Mushugoi Huduk (S. Mongolia).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Franklinite (Франклинит)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franklin mine, New Jersey (USA).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromite (Хромит)</th>
<th>53</th>
</tr>
</thead>
</table>

1.2.2. Hematite group

<table>
<thead>
<tr>
<th>Hematite (Хематит)</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Heterogenite (Хетерогенум)</td>
<td>1</td>
</tr>
<tr>
<td>1.2.3. Bixbyite - Manganite group</td>
<td></td>
</tr>
<tr>
<td>- [Неопределённые вторичные Mn - ви минерализации и конкреции]</td>
<td>9</td>
</tr>
<tr>
<td>Manganite (Манганит)</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4. Braunite - Hausmannite group</td>
<td></td>
</tr>
<tr>
<td>Braunite (Браунит)</td>
<td>2</td>
</tr>
<tr>
<td>Hausmannite (Хаусманит)</td>
<td>3</td>
</tr>
<tr>
<td>Marokite (Марокит)</td>
<td>3</td>
</tr>
<tr>
<td>Chalcophanite (Халкопфанит)</td>
<td>5</td>
</tr>
<tr>
<td>1.2.5. Pyrolusite - Hollandite group</td>
<td></td>
</tr>
<tr>
<td>Pyrolusite (Пиролузит)</td>
<td>16</td>
</tr>
<tr>
<td>Cryptomelane (Криптомелан)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>Hollandite (Холандит)</td>
</tr>
<tr>
<td></td>
<td>Coronadite (Коронадит)</td>
</tr>
<tr>
<td></td>
<td>Birnessite II (Бирнесит II)</td>
</tr>
<tr>
<td></td>
<td>Rancieite (Ранцийт)</td>
</tr>
<tr>
<td></td>
<td>Todorokite (Тодорокит)</td>
</tr>
</tbody>
</table>

1.3. Ti-Nb-Zr assemblage
1.3.1. Rutile group

	Brookite (Брукит)		
	Anatase (Анатаз)		
	Cassiterite (Касситерит)		
	Baddeleyite (Бадделейт)		
	Belyankinite (Белянкинит)		
	Tazheranite (Тазеранит)		
	1.3.3. Columbite - Tantalite group		
	Columbite (Колумбит) - Tantalite (Танталит)	Vishteritsa quarry, W. Rhodopi Mts.; Smilovene quarry, Koprivshtitsa reg. (Bulgaria). Hagendorf, Bavaria (Germany).	

1 Mt. St. Hilarie, Quebec (Canada).

1 Baia Sprie (Romania).

3 Grove Hill (Australia).

3 Hagendorf, Bavaria (Germany).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vodginite (Водгиннит)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ixiolite (Иксиолит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Thoreaulite (Торолит)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gerasimovskite (Герасимовскит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3.4. Euxenite group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Euxenite (Евксенит)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Fersmite (Ферсмит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Brannerite (Бранерит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aeshtynite (Ештийнит)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Samarskite (Самарскит)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Tanteuxenite (Тантейксенит)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ishikawaite (Ишикауит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vigezzite (Визецит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3.6. Ilmenite group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ilmenite (Илменит)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Pseudobrookite (Псевдобрукит)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Davidite (Давит)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3.7. Perovskite group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perovskite (Перовскит)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.3.8. Pyrochlore group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyrochlore (Пирохлор)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Microlite (Микрокл)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>- Yttromicrolite (Итромикрокл)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Plumbmicrolite (Плумбомикрокл)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bariopyrochlore (Бариопирохл)</td>
<td>1</td>
</tr>
</tbody>
</table>

Ilimaussaq (Greenland), Zaporozh'ye reg. (Ukraine), Ilmeny, Ural (Russia), Zimbabwe, Alto Ligonha (Mozambique), Wodgina (Australia). Kvodor dep., Kola pen. (Russia). Tanco mine, Manitoba (Canada).

Alto Ligonha (Mozambique).

Congo.

Lovozero, Kola pen. (Russia).

Ingelsbo (Sweden). Ribaue (Mozambique). Antsirabe (Madagascar).

Khibiny., Kola pen. (Russia).

Iragna (Switzerland).

Ticino (Switzerland). Hopfleiboden (Austria). Ilmeny, Ural (Russia).

Chepelare, Smolyan reg. (Bulgaria).

Seven Rila Lakes, Rila Mt. (Bulgaria).

Val Vigezzo, Alps (Italy).

Jumilla (Spain).

Crockers well olary (S. Australia).

Zlatoust, Ural; White Sea reg.; Tazheran massif, Siberia (Russia). Bitchu, Okayama (Japan). Kimberley Divison (W. Australia).

Ilimaussaq (Greenland). Transbaikalia, Siberia (Russia). Leushe (Zaire).

Smilovene quarry, Koprivshtitsa reg. (Bulgaria). Alto Ligonha (Mozambique).

Kararfvet mine (Sweden).

Kola pen. (Russia).

Khibiny, Kola pen. (Russia).
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.9. Fergusonite group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fergusonite (Фергусонит)</td>
<td>2</td>
<td>Ytterby (Sweden). Ural (Russia).</td>
</tr>
<tr>
<td>1.4. Zn-Cu-Pb(U) assemblage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.1. Zincite - Tenorite group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zincite (Цинкит)</td>
<td>1</td>
<td>Franklin mine, New Jersey (USA).</td>
</tr>
<tr>
<td>Tenorite (Тенорит)</td>
<td>2</td>
<td>Kremikovtsi dep., Sofia reg. (Bulgaria). Pinal County, Arizona (USA).</td>
</tr>
<tr>
<td>Delafossite (Делафосит)</td>
<td>3</td>
<td>S. Ural (Russia). Bisbee, Arizona (USA).</td>
</tr>
<tr>
<td>Crednerite (Креднерит)</td>
<td></td>
<td>Mendip Hills, Somersetshire (England).</td>
</tr>
<tr>
<td>Murdockite (Мурдокит)</td>
<td>1</td>
<td>Socorro County, New Mexico (USA).</td>
</tr>
<tr>
<td>1.4.2. Plattnerite group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massicot (Масикот)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Minium (Миний)</td>
<td>2</td>
<td>Maricopa County, Arizona (USA). Kastelberg.</td>
</tr>
<tr>
<td>1.4.3. Uraninite - Schoepite group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uraninite (Уранити)</td>
<td>6</td>
<td>Bulgaria. Pribram; Petrovice; Slavkovice, Moravia (Czech Republic). Hagendorf (Germany).</td>
</tr>
<tr>
<td>2. Semi - metallic and nonmetallic oxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1. Senarmontite group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismite (Бисмит)</td>
<td>2</td>
<td>Val di Castello, Tuscany (Italy).</td>
</tr>
<tr>
<td>2.2. Bistromite - Schafarzikite group</td>
<td></td>
<td>Benambra, Victoria (Australia).</td>
</tr>
<tr>
<td>Apuanite (Апунит)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Namibite (Намибит)</td>
<td>1</td>
<td>Kremenitsa, Blagoevgrad reg. (Bulgaria). Belvedere, Furkapass (Switzerland).</td>
</tr>
<tr>
<td>2.3. Stibiconite group</td>
<td>3</td>
<td>Vrancice (Czech Republic). La Sanguinede, Herault (France). Dundas, Tasmania (Australia).</td>
</tr>
<tr>
<td>Stibiconite (Стутбиконит)</td>
<td>4</td>
<td>Siena (Italy).</td>
</tr>
<tr>
<td>Bindheimite (Биндхаймит)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Stetefeldtite (Стетефилдит)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mopungite (Мопунгит)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
CLASS 4. HALOGENIDES

1. Fluorides

1.1. Fluorite group

Villiaumite (Вилюумит)	7	Kazakhstan. Transbaikalia, Siberia (Russia).
Gagarinite (Гагаринит)	4	Moldava (Czech Republic).
Zavaritskite (Заварыцкий)	1	

1.3. Cryolite group

Cryolite (Криолит)	29	Ilimusaq; Ivigtut (Greenland). Transbaikalia, Siberia (Russia).
Cryolithionite (Криолитонит)	2	Ilimusaq (Greenland).
Thomsenolite (Томсенолит)	7	Ilimusaq (Greenland). Transbaikalia, Siberia (Russia).
Jarlite (Ярэйт)	2	Ilimusaq (Greenland).
Chiolite (Хюолит)	1	Ilimusaq (Greenland).
Weberite (Веберит)	1	Ilimusaq (Greenland).
Ralstonite (Ралстонит)	1	Ilimusaq (Greenland).
Boggildite (Боггилдит)	1	Ilimusaq (Greenland).
Fluellite (Флюеллит)	3	Richelle (Belgium). Kapunda (Australia).

1.4. Prospite group

<p>| Prospite (Прозопит) | 2 | Ilimusaq (Greenland). |
| Geearsutite (Геарксит) | 1 | Ilimusaq (Greenland). |</p>
<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Creedite (Крігум)</td>
<td>Kazakhstan. Aquiles Cerdan, Chihuahua (Mexico).</td>
</tr>
<tr>
<td></td>
<td>2. Chlorides, Bromides and Iodides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2. Na-Ca-K assemblage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.1. Halite group</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Halite (Halum)</td>
<td>Atanasovsko ezero, Burgas reg.; Provadiya reg. (Bulgaria). Rhon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Germany). Bochnia (Czech Republic). Wieliczka; Inowrocław-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klodawa (Poland). Salnik; Telega (Romania). Sallent; Cardona</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mine, Catalonia (Spain). Cheshire (England). Artemovsk; Solotvino</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ukraine). Solegorsk (Byelorussia). Solikamsk dep. (Russia).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Khodzha-Achkan (Kirghizia). Egypt. Salton Sea, California (USA).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sallent (Spain). Solegorsk (Byelorussia). Ural; Solikamsk dep.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Russia). Salton Sea, California (USA).</td>
</tr>
<tr>
<td>9</td>
<td>Sylvite (Сільвин)</td>
<td>Kladno (Czech Republic).</td>
</tr>
<tr>
<td></td>
<td>Sal ammoniac (Салмук)</td>
<td>Sallent (Spain).</td>
</tr>
<tr>
<td></td>
<td>2.2.2. Carnallite group</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Carnallite (Карналум)</td>
<td>Broken Hill (Australia).</td>
</tr>
<tr>
<td></td>
<td>2.3. Cu-Ag-Pb-Hg assemblage</td>
<td>Vrancice (Czech Republic). Broken Hill (Australia).</td>
</tr>
<tr>
<td></td>
<td>2.3.1. Nantokite - Chlorargyrite group</td>
<td>Kamchatka pen. (Russia).</td>
</tr>
<tr>
<td>4</td>
<td>Chlorargyrite (Хлораргітум)</td>
<td>Quetena mine; Copiapo, Atakama (Chile). Sunson Mt., Port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Augusta (S. Australia).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sierra Gorda (Chile).</td>
</tr>
<tr>
<td>2</td>
<td>Iodargyrite (Йодаргітум)</td>
<td>Mendip Hills, Somersetshire (England).</td>
</tr>
<tr>
<td></td>
<td>Tolbachite (Толбачум)</td>
<td>Laurium (Greece).</td>
</tr>
<tr>
<td></td>
<td>2.3.2. Atacamite group</td>
<td>Hammam, N'Bails (Algeria).</td>
</tr>
<tr>
<td>4</td>
<td>Atacamite (Амакамум)</td>
<td>Cetine di Cotorniano, Siena (Italy).</td>
</tr>
<tr>
<td></td>
<td>Paratacamite (Парамакамум)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.3. Boleite group</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Boleite (Болеум)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.4. Cotunnite - Matlockite group</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mendipite (Менджум)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Laurionite (Лауріоніт)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Nadorite (Надоріт)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Onoratoite (Онорамоум)</td>
<td></td>
</tr>
</tbody>
</table>
References

Buresch I. 1953. Atanas Stefanov - The first research fellow of the Geological Institute at the Bulgarian Academy of Sciences. - Priroda, Sofia, 4: 82-86. (In Bulgarian).

Authors' addresses:
Chavdar Karov
Ilia Dimitrov
National Museum of Natural History
Tsar Osoboditel Blvd. 1
1000 Sofia, Bulgaria
E-mail: lakichepelare@abv.bg

Received on 15.03.2002
Каталог на минералните видове в Националния природонаучен музей, София (част 1).
Самородни елементи, сулфиди и сулфосоли, оксици и хидроксици, халогеници

Чавдар КАРОВ, Илия ДИМИТРОВ

(Резюме)

Новият каталог на минералните в Националния природонаучен музей е базиран на системата на КОСТОВ (1993). Каталогът включва образците, инвентирани в основния минераложки фонд до 2001 г. Първата част включва първите четири минераложки класа - самородни елементи, сулфиди и сулфосоли, оксици и хидроксици, халогеници. От тези класове в каталога са представени 238 минерални вида, 10 разновидности и 5 вида с второстепенен значене в образците.
Изследвания върху пеперудната фауна на парка "Дурмитор" в Черна гора

Стойан БЕШКОВ

От Дружество "Млади Истраживачи" в Белград бяхме поканени с колегата Марио Ланеуров от Института по зоология на изследователската акция "Тепца 2001" в каньона на река Тара в парк "Дурмитор". За място на лагера беше избрано бившето училище на разпръскнатото на рогози място с. Тепца. Селото е разположено дълбоко в каньона на р. Тара на 650-800 m н.в. До него се стига по една еднокъсов път, който пръвка от Жаблик и се изкачва до 1500 m н.в. при местността "Чуребац" и оттам по земна пътека с множество завои се стига до каньона на река Тепца. За няколко километра се изминава дълбоката долина на около 900 метра. Чуредвац е на горната граница на долината и оттам се открива невероятна гледка към околните градини върхове и каньона на р. Тара, признат за втори по дълбочина в света след каньона на Колорадо.

Всъщност ми трябваха 58 кг и се състояше предимно от ентомологичен инвентар - генератор "Хонга", аккумулатор, зарядно устройство, светлинна ловилка, лампи, кабели, стаплиб, плащна, купчи за пеперуди, морилка, електрошок, ентомологичен сак и 10 литра бензин. Тежестта му не ми позволяваше да се отделям от лагера. Всяка вечер избирах различно място за ловене на не повече от 4-5 km от лагера, често и от дълга естествена граница на р. Тара. До избраното място носех багажа на два пътя. След обяд по едно изразно място на р. Тепца и създаваше новият мост на пътя до избраното място за лов. При генератора място, където ловилката оставяше за през нощта. Тя автоматично се включваше като се стъпяше и се самоизключва сухарин. Така бях вече в лагера за генератора и останалата екипировка, ми носех покрай ловилката и продължавах напред, като се избирало място за ловене на лампа. Втората възможност беше установяването на генератора и разпръскване на пътя към тепца и ловицата на правата със запасъчни възможности, уверени в нити. През деня с ентомологичен сак лових дневни и нощни пеперуди предимно края буйната и студена река Тепца.

Това, което важи за ентомология възниква от пръв поглед, е преобладаване на борейна фауна и през сезона еднакво брой на видовете и също и ентомологичните видове. Интересна е комбинацията от Coscina cribaria, Charisqela certhiatus, Idia calvaria, Metachrosis tardouini, Autographa pulchrina, Mniotype adusta, Ampylpyra tetra, Hyppa rectilinea, Calliopus ramoso, Paracrida suscet, Mythima impura, Eucoa decor, Dichagyris renigera i Paradrymonia vivata. Последните две вида на място са масови. Dichagyris renigera възниква често в страната и на подвижно или траекторно напълно на D. renigera argentina, известен сега единствено от приморска Белушка. Белезателни този таксон е екологична форма. От Дурмитор бяха уловени няколкостотин видови ентомологии, повечето от които нощни. Heteroptera dumetorum e нов вид за Балканския полуостров. Досега той беше известен само с един екземпляр от каньона на река Тепца, но се оказа, че на място не е рядък. Вероятно между останалите пеперуди ще се установят и още нови видове за ловилката на парк, Република Черна гора и други Югославия. След окончателното им обработване результатите ще бъдат публикувани.
ЗА ПОНТИЙСКИЯ ФАУНИСТИЧЕН ЕЛЕМЕНТ В БЪЛГАРИЯ

Благой ГРУЕВ

Abstract. The concept of „Pontic faunistic element in Bulgaria“ is analyzed and determined. The Pontic element in Bulgaria is composed of land species of the Eurasian steppe, which settled in the country during various periods of the late Tertiary and especially of the Quaternary. The most important influence of the steppe and wood-steppe biome upon the Bulgarian fauna comes from the Pontic biogeographic province.

Key words: Zoogeography, Pontic element, Bulgaria

Огромният биом на евразийските степи се простират от северните брегове на Черно море и Източна Европа (Б Молдавия, Украйна и Европейска Русия), през Южен Сибир, с прекъсвания, до Далечния Изток на Палеарктична. На запад, в южната част на Средна Европа, се намира малък степен участък, известен като „унгарска пуста (пуста; бж фиг. 1)“. В България липсват части от биома, но в някои райони (особено в Добруджа и в останалите територии на Северна България), където е разбита лесостепноподобна растителност, се наблюдават сходства със степите в климата, флората и фауната.

понтийския геоелемент (флористична и зоогеографска провинция) рано на био-географска единица и го приема за Понтийска провинция (фиг. 1).

Много от степите по произход и основно разпространение (В евразийските степи и лесостепи) вида растения и животни са се разпространили далече на запад в Европа и Средиземноморието, а също и на изток върху Казахстан, Пресна и Средна Азия. Най-големите ареали обхващат и Централна и Палеарктика Източна Азия.

От целия биом на евразийските степи, поради непосредствената близост и сходствата в климата, най-сильно у нас се проявява флористичното и фаунистичното влияние на Понтийската био-географска провинция. Особено осезателно се чувства това влияние
Степните видове растения и животни у нас съставляват съответно Понтийски флорен елемент (Станев, 1975; Валтер, 1982) и Понтийски фаунистичен елемент. И единият, и другият представляват съвкупности от сухоземни максими.

Понтийският фаунистичен елемент в България се отнася към Евроазиатския степен фаунистичен комплекс (Груев, 1988; Груев б: Груев и Кузманов, 1994, 1999). Видовете му населяват най-често низините, възвишенията и ниските части на планините. Но има и такива, които се срещат в безлесни терени и докъм 1000 м н.в. Тази граница надхвърлят твърде значително т.н. субпонтийски видове, приложи или на по-малко сухите северни либиди стени, за разлика от еупонтийските (същински понтийски видове), заселили се у нас от сухите южни (котлови) степи. Особеността на местообитанията на субпонтийските степни видове у нас може да се обясни с голямата хладностоичноност нат мези видове, пригодни в условия на значителни сезонни и геноноции флуктуации на температурата и на други физикогеографски фактори.

За пра̀вилно опериране с понятието „Понтийски фаунистичен елемент в България“ е необходимо то да се конкретизира и едновременно с това да се „изчисти“ от „примеси“, срещащи се в литературата.

Понтийски фаунистичен елемент в България трябва да разбира съвкупността от видове на евразийските стени, приложи в България от степни центробе на разпространение в различно време (и предимно през квармернера [Вульф, 1944; Бобринский, 1951; Попов, 1984], включително през фази на засушаване в холоцена, които създавали условия за експанзия на стени на злаг).

Съществуването на Понтийски фаунистичен елемент у нас се обуславя от исторични причини (главно палеоклиматично); от сегашния климат в някои участъци на страната, сходен със степния (особено умереноконтиненталния климат на Северобългарски биогеографски район и на първо място в Добруджанския му подрайон - по Груев, 1988); от тундрове растителност в различни части на страната, които може да се охарактеризират като лесостепенподобни. В същото предвид важно е понятието „Степен фаунистичен елемент в България“.

Смесване (включително отмъжествяване от части) на понятия с различно съдържание се установява в Дренски (1946):
1. На с. 121 се говори за „степни реликти“, „степна фауна“, „степни елементи“, „степни видове“, които се илюстрират с най-чисто типично степни таксони. Но на с. 128, 148, 152 и гр. „степните елементи“ се представят като „иряно-турански елементи“. Смесвания от подобен род с използване на част от същите таксони, дадени като примери за „степни елементи“, се срещат и на други места в текста на посочения труд, което все по-големи да го протибоголява. Степните (Понтийския) елемент трябва да се разграничава от Ирано-Туранския (Субиринския) (Гълев & Гълев & Кузманов, 1994, 1999). Това, че степни видове присъстват в Иранската и Турската провинция, не означава, че те са ирано-турански. Тези видове, разпространили се от степни центрове, се срещат по разбираеми причини в опустелистите степи и в полупустините на тези провинции.

Въпросът за Субиринския (Ирано-Туранския) фаунистичен елемент заслужава да бъде разглеждан въз основа на необходимата загълбоченост и да бъде събрани (за оразмежване) с Понтийския елемент. Много е вероятно ирано-туранските видове да са възникнали в древните топли югозападноазиатски степени и аридни области (Стефанов, 1943; Вуйч, 1944; Станев, 1975), но за разлика от останалите степни и сухолюбиви по произход видове да са останали да съществуват в опустошващата се Иранска област благодарение на възможностите им за адаптация. Последователно със засушаването през неозена те или техните генерации са могли да се разпростратят от Иранския център (който е генетичен център на ирано-туранските видове - Вуйч, 1944), като в Турската област, така и в Субмерделерската зона (включително в България) и в Средиземноморието.

2. Част от означените от Дренски „понтийски елементи“ са сухоземни (бъл подражи Дамянов & Лихарев, 1975), а друга част - водни (сравнително и морски) видове. Общо това част от посочените видове са разпространили само около Черно море. Те би трябвало да се отнесат в зависимост от генезисните и екологичните им характеристики към Евксинския и Източносубмерделерски подементи на Субмерделерския фаунистичен елемент (Гълев, 2000; Гълев & Бечев, 2000). Дамянов & Лихарев (1975, c. 60) означават околовчорноречните мезофилни видове като „евксински“, а ксерофилните - като „понтийски“.

Друга група сухоземни видове се „Pholcus ponticus“ Th. ...Воронеж, Саратов, Саратов, Херсон, Одеса, Екмеринослав... „Tarentula opitex Wagner, T. albopasciata Brulle“ имам по-красива черти на степни видове. Изброяваме го тук смесявания се абстрактният понятието „Понтийски“.

Друго понятие в нашата литература, което трябва да се изясни, е „понтомерделерски вид“. Според Heiss & Josifov (1990) понтомерделерските видове у нас се отнасят към „Межмерделерски фаунистичен елемент“. Общо това Josifov (1999) ги отбелязва с източно-мерделерските видове и ги поставя вече към „Средиземноморски“.
комплекс“. В същия труд авторът поставя още една група към Междуречная комплекс - „Понтомегумерански видове с по-широко разпространение“. ХУБЕНОВ (1997) третира Понтомегумеранския елемент като представен от „мегумерански видове в широк смисъл“, без да изяснява какво да се разбира под това понятие.

В светлината на настоящото изследване видовете с понтмийско (степно) - субмегумеранско - мегумеранско (понтомегумерански) разпространение се отнасят към нас Към Понтмийския фаунистичен елемент на Евразиатския степен комплекс (ГРУЕВ, 1988; ГРУЕВ и КУЗМАНОВ, 1994, 1999). В полза на това събуждане може да се приведе и изказаното от ПОПОВ (1976) мнение, че понтомегумерански видове мрежокръгли насекоми принадлежат към Neuroleon и Ascalaphus, които родове са „характерни представители на степната фауна“.

Примерен списък на видове, принадлежащи към Понтмийския (Степния) фаунистичен елемент в България

Тип ARTHROPODA
Клас Insecta
Разред Orthoptera

Platycleis grisea (F.)
P. intermedia* (Serv.)
P. affinis* Fieb.
Incertana incerta (Br.-W.)
Oecanthus pellucens (Scop.)
Acheta deserta (Pall.)
Tetrix depressa Bris.
Doclostaurus brevicollis (Ev.)
Източници: ПЕШЕВ (1964, 1975)
Разред Coleoptera

Pterostichus chamaeleon Motsch.
Sphenoptera substriata Kryn.
S. basalis Moraw.
Anthaxia rossica Dan.
Agrilus curtii Obnbg.
Cylindromorphus bifrons Rey
Meloboeus subulatus (Moraw.)
Labidostomis lucida (Germ.)
Clytra atraphaxidis (Pall.)
Psylliodes reitteri Weise

Източници: ЛОПАТИН (1977); ГРУЕВ & ТОМОВ (1984); ЛОПАТИН & КУЛЕНОВА (1986); МЕДВЕДЕВ (1990); САКАЛЯН (1996); GRUEV & TOMOV (1998);
GUEORGUEV & MUIJWJK (2000); САКАЛЯН & ЛАНГУРОВ (2001)

Разред Hymenoptera

Formica cunicularia glauca Ruzsky
Източници: АТАНАСОВ & ВАСИЛЕВА (1976)

Разред Chordata

Клас Reptilia

Разред Squamata

Podarcis (= Lacerta) taurica Pall.
Vipera ursinii (Bonap.)

Източници: ВЕШКОВ & БЕРОН (1964); БАННИКОВ (1969); ПЕТРОВ, СТОЕВ & БЕШКОВ (2001)

Клас Aves

Разред Gruiformes

Otis tarda L.
O. tetrax L. (изчезнал у нас)

Разред Charadriiformes

Glareola nordmanni (Nord.)

Източници: ПАТЕВ (1950); БОЕВ (1964, 1985); ПОПОВ & КУМANSКИ, 1988

Клас Mammalia

Разред Rodentia

Sicista subtilis Pall.
Cricetus cricetus L.
Cricetulus migratorius Pall.
Разгляд Carnivora

Mustela eversmanni Lesson
Vormela peregusna Guldsdt.
Източници: НАУМОВ & КУЗЯКИН (1971); ПЕШЕВ (1984); ПОПОВ (1984); МАРКОВ (1988); SPASSOV et al. (2002)

Без съмнение, предложеният списък ще бъде разглеждан критично и допълван в бъдеще от зоолозите, специалисти по различни групи животни от Mollusca и Arthropoda до Mammalia.

Заключение

1. Понтийският (= Староанатолийски) фаунастичен елемент в България е съставен от степни по произход (или поне по общи степни центрове на разпространение) вида, наблюдава тук от евразийските степи главно през засушлуваните фази на кватернерата (някои са вероятно степни реликви от късния перцер).

2. Понтонийският (Староанатолийски) фаунастичен елемент у нас принадлежи на Евразийския степен комплекс и към него се отнасят също т.н. понтонегромерлански вида. Последните са степни видове, разпространили се от Понтийската провинция върху Субмеритеранската провинция и Средиземноморието (предимно Източното Средиземноморие). Понтонегромерланските видове не трябва да се отмеждават с източномеритеранските. Първите принадлежат на Понтонийския елемент към Евразийския степен фаунастичен комплекс, а вторите - на Източномеритеранския елемент към Меритеранския фаунастичен комплекс у нас. В този смисъл понтонегромерланските видове не трябва да се събхват като меритеранскод-пречерноморски (околочерноморски), а като степни по произход (или поне по общи степни центрове на разпространение) и разпространили се и в Средиземноморието. Ареалите им в днешно време обхващат степни (на първо място), субмеритерански и меритерански територии.

3. Степните видове у нас са разпространени в терени с климатични и други физико-географски условия, обуславящи ксерофилна и мезоксерофилна растителност, сходна с тази в лесостепните.

Благодарности

Изказвам дълбоката си благодарност на моите колеги г-р Алексей Попов от Националния природонаучен музей (БАН) за ценни съвети и предложения за корекции в статията, и г-р Димитър Бечев от ПУ „П. Хилендарски“ за критичното и обсъждане и техническото оформление.
Литература

Бобрийский Н. 1951. География животных. Ученый, Москва, 384 с.

Бое Н., Георгиев Ж., Дончев С. 1964. Птиците на Тракия. - В: Фауна на Тракия, 1. БАН, София, 55-105.

Вули Е. 1944. Историческая география растений. Акад. наук СССР, Москва - Ленинград, 545 с.

Груев Б., Бачев Д. 2000. Геоэкологически изследовани на видовете местностите на подсемейства Lamprosomatinae, Eumolpinae, Chrysomelinae, Alticinae, Hispinae и Cassidinae (Coleoptera, Chrysomelidae) и разпределение им в биогеографските районы на България. - Научни трудове ПУ „П. Хилендарски“, Animalia, 36 (6): 5-34.

Груев Б., Кузманов Б. 1999. Общ биохимия (3-то доп. изд.). Плодбивско унв. изд., Пловдив, 344 с.

Пещев Г. 1964. Проблеми на насекомите (Orthoptera) от Тракия. - В: Фауна на Тракия, 1. БАН, София, 107-144.
ПЕШЕВ Г. 1975. Правокрилата фауна (Orthoptera) на Родопите. II. Видов състав, разпространение и прохожд. - В: Фауна на Родопите. БАН, София, 93-120.

СЕМЕНОВ-ТЯН-ШАНСКИЙ А. 1936. Предели и зоогеографически разпределения на палеарктической области за наземни сухопутни животни на основание географическото разпределение на рептилиите в България. Акад. наук СССР, Москва - Ленинград, 12 с. + карта.

СТЕФАНОВ В. 1943. Фитозоографски елементи в България. БАН, София, 509 с.

About the Pontic faunistic element in Bulgaria

Blagoy GRUEV

(Summary)

The concept of "Pontic faunistic element in Bulgaria" is analyzed and determined. The Pontic element in Bulgaria is composed of land species of the Eurasian steppe, which settled in the country during various periods of the late Tertiary and especially of the Quaternary. The most important influence of the steppe and wood-steppe biome upon the Bulgarian fauna comes from the Pontic biogeographic province. The Ponto-mediterranean species in Bulgaria belong to the Pontic element too. A short list of exemplary taxa is given.
Copepodes harpacticoïdes souterraines de France 5.
Description d'un nouveau stygobie du genre
Elaphoidella sensu Apostolov, 1985,
Elaphoidella *brevicaudata* n. sp. et quelques
remarques sur l'espèce *Elaphoidella* *cf.* *leruthi*
Chappuis, 1937

Apostol APOSTOLOV

Abstract. A new species, *Elaphoidella* *brevicaudata* n. sp., is described from subterranean habitats in Alpes de Haute Provence Departement, France. The new species belongs to the group of *Elaphoidella* *gracilis* sensu APOSTOLOV (1985) and is morphologically close to *Elaphoidella* *phreatica* Chappuis, 1925. A specimen of *Elaphoidella* *cf.* *leruthi* Chappuis, 1937 is re-described based on a single female.

Key words: Subterranean Harpacticoida, *Elaphoidella*, new species, France

Introduction

La présente note fait suite à mes recherches sur les eaux souterraines de la France et contient uniquement la description d'une espèce nouvelle du genre *Elaphoidella* sensu APOSTOLOV (1985) et qui doit être considérée comme la cinquième d'une série de publications faunistiques concernant les harpacticoïdes souterraines de la France.

Le matériel dont l'étude vient d'être amorcée a été récolté par Claude Bou.
Seize échantillons ont été prélevés en différents points de la France. Le matériel ici décrit provient de deux stations des Alpes-Ouest et du Massif Central. J'ai trouvé deux espèces d'harpacticoïdes stygobies, dont l'une était nouvelle, l'autre est très proche de l'espèce *Elaphoidella* *cf.* *leruthi* Chappuis. La description de ces deux espèces fait l'objet de la présente note.
Fam. CANTHOCAMPTIDAE
Genre *Elaphoidella* sensu Apostolov, 1985

Elaphoidella brevicaudata n. sp.
Matériel examiné: 3 femelles et 1 mâle (Fig. 1-19)
Localité-type: Simiane; Aven du Rousti; département Alpes de Haute Provence; le 20.02.1999; Coll. C. Bou.
Holotype: 1 femelle, conservée dans la collection scientifique de l'Université à Bourgas, Bulgarie.
Paratype: 2 femelles et 1 mâle.

Diagnose.
Femelle. Antennule à huit articles avec aesthètes au quatrième article. Antenne à exopodite uniarticulé portant quatre épines, dont deux apicales et deux internes. Exopodite de P2-P4 triarticulé, endopodite biarticulé. L'article basal de l'endopodite P1 atteignant le milieu du troisième article de l'exopodite, il est muni d'une soie située au-dessus du milieu. L'article basal de l'endopodite des P2-P4 porte une soie interne. L'article médian des exopodites P1-P4 avec une soie interne. Basoendopodite P5 n'atteignant pas le milieu de l'exopodite, portant quatre soies; exopodite ovale, avec quatre épines, dont la deuxième est plus longue est barbelée. Branches furcales 1.25 fois plus longues que larges; deuxième soie apicale élargie à sa base.
Mâle. Antennule préhensile. Endopodite P2 biarticulé, l'article basal avec une soie interne; deuxième article avec deux soies, dont l'une interne et l'autre apicale. Endopodite P3 triarticulé, l'article basal avec une soie interne. Troisième article de l'exopodite P4 avec six soies et épines, dont 3 à 5 munies de dards grossiers. Basoendopodite P5 réduit, sans épines; l'exopodite ovale, avec quatre épines, dont l'interne est très petite. Branche furcales plus longues que larges.

Description.
Femelle. Le bord postérieur des somites du corps est lisse dorsalement et ventralement (Fig. 1, 2). Sur la face ventrale, l'ornementation des somites est la suivante: somite génital avec une rangée distale de spinules interrompue de la zone médiane; les deux somites suivants avec une rangée ininterrompue de spinules à leur bord postérieur (Fig. 3).
Le bord libre de l'opercule anal est arrondi, orné de fines spinules (Fig. 2).
Furca (Fig. 2, 8): les branches furcales sont 1.25 fois plus longues que larges; elles sont armées de deux soies apicales, l'interne deux fois plus longue et quatre fois plus large que l'externe, un peu élargie à sa base, d'une soie subapicale interne et de deux soies latérales inscrites l'une au premier tiers, l'autre au second tiers du bord externe; sur la face dorsale, une soie géniculée à sa base. Pas d'ornementation à leur surface.
Antennule (Fig. 4): composé de huit articles; le quatrième avec un aesthète.
Antenne (Fig. 5): allobasis glabre. Exopodite uniarticulé avec quatre épines, dont deux internes et deux apicales. Endopodite uniarticulé avec deux épines et deux spinules au bord interne, cinq épines apicales.
Fig. 1-8. *Elaphoidella brevicaudata* n. sp., femelle: 1 - Habitus; 2 - somite anal et furca vue dorsale; 3 - somites abdominaux, vue ventrale; 4 - A1; 5 - A2; 6 - Mxp.; 7 - Aire génital; 8 - Furca latérale
Maxillipède (Fig. 6): basis glabre. Premier article de l'endopodite lisse; deuxième article avec un fort crochet.

P1 (Fig. 9): basipodite avec deux épines, l'une interne et l'autre externe, forte. L'article basal de l'endopodite n'atteignant pas l'extrémité du troisième article de l'exopodite; il est armé d'une soie barbélée à l'angle distal interne; deuxième article avec une épine distale interne; troisième article porte trois épines. Exopodite avec les épines usuelles à l'angle distal externe des deux premiers articles; deuxième article avec une épine distale interne; troisième article avec quatre addendes.

P2 (Fig. 10): basipodite avec une forte épine externe. Endopodite biarticulé. Le premier article porte une longue soie barbélée, situé au milieu de l'article. Deuxième article porte quatre soies, dont deux internes et deux apicales. Exopodite avec une soie interne sur le deuxième article et cinq sur le troisième article, dont une soie interne.

P3 (Fig. 11): avec un endopodite biarticulé, premier article avec une soie interne, second article avec trois soies interne, deux soies apicales et une soie subapicale. L'exopodite porte six soies et épines sur l'article terminal.

P4 (Fig. 12): basipodite avec une longue épine externe. Endopodite biarticulé; premier article avec une soie interne, deuxième article avec deux soies interne, dont la deuxième est plus forte et barbélée dans sa moitié inférieure. Article distal de l'exopodite avec six soies et épines.

La chétotaxie des P2-P4 peut être résumée ainsi:

<table>
<thead>
<tr>
<th>Exopodite</th>
<th>Endopodite</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>0 1 1 2 2</td>
</tr>
<tr>
<td>P3</td>
<td>0 1 2 2 2</td>
</tr>
<tr>
<td>P4</td>
<td>0 1 2 2 2</td>
</tr>
</tbody>
</table>

P5 (Fig. 13): basoendopodite ne dépassant la base de l'exopodite; il est armé de quatre épines barbélées. Exopodite ovale, avec quatre épines, dont la deuxième de l'interne est bien développée et barbélée.

Longueur de la femelle: 0.42 mm.

Mâle. L'ornementation du corps et des branches furcales comme chez la femelle (Fig. 14), sauf la soie apicale médiane qui est un peu élargie à sa base.

Antennule (Fig. 15): préhensile.

Antenne est identique à celle de la femelle.

La chétotaxie des exopodite P1-P3 est identique à celle de la femelle.

P2 (Fig. 16): endopodite biarticulé, l'article basal avec une soie interne; second article porte une soie interne et une soie apicale.

P3 (Fig. 17): endopodite triarticulé; premier article porte une soie; deuxième article avec une longue épine; troisième article avec deux épines apicales, dont l'interne est plus courte.

P4 (Fig. 18): endopodite biarticulé, premier article glabre, deuxième article avec deux épines apicales, dont l'externe est plus courte. L'article distal de l'exopodite avec six épines, dont la deuxième est bien développée; troisième à cinquième avec une dimorphisme sexuelle.
Fig. 9-19. *Elaphoidella brevifurcata* n. sp., femelle et mâle: 9 - P1o; 10 - P2o; 11 - P3o; 12 - P4o; 13 - P5o; 16 - endopodite P2o; 17 - endopodite P3o; 18 - P4o; 19 - P5o
P5 (Fig. 19): basoendopodite réduit à une lame chitineuse, sans épines à sa partie interne. Exopodite petit avec quatre épines apicales, dont l’interne est plus petite; deuxième épine de l’interne à l’externe beaucoup plus développée que les deux suivantes.

Longueur du mâle: 0.40 mm.

Étymologie. Nous nommons la nouvelle espèce brevicaudata qui possède une plus courte branche furcale.

Écologie. C’est une forme stygobie qui habite les eaux souterraines.

Position systématique

Elaphoidella brevicaudata n. sp. montre une assez grande ressemblance avec *Elaphoidella phreatica* décrite par CHAPPUIS (1925). Il offre de nombreux points communs avec cette espèce: article terminal de l’exopodite P2 avec cinq addendes; dernier article de l’exopodite P3 et P4 avec six addendes; basoendopodite et exopodite P5 avec quatre épines.

La nouvelle espèce s’en distingue par les caractères suivants:
- le bord postérieur des somites du corps lisse;
- branches furcales plus courtes que celui-ci de phreatica;
- soie apicale médiane plus épessée, élargie à sa partie médiane.

Elaphoidella brevicaudata n. sp. ressemble beaucoup à *Elaphoidella jeanneli* Chappuis de Italie et Macédoine. Mais on ne peut rapporter la nouvelle espèce à celle-ci bien qu’elle montrent des particularités assez proches. Elle montre des écarts notables par rapport à *Elaphoidella jeanneli*. Ces écarts se rapprochent à des différences de longueur de la furca, ainsi qu’à la chénotaxie de cinquième patte natatoire. Basoendopodite P5 porte, dans l’espèce *Elaphoidella jeanneli*, trois épines, chez nos exemplaires nous observons une épine supplémentaire notablement plus courte.

Les mêmes différences on peut être relevé permis la nouvelle espèce et *Elaphoidella charon*.

La comparaison entre les exemplaires femelles montre que par la structure de P1 et surtout par P3 et l'exopodite de P4, la nouvelle espèce se rapproche davantage de *Elaphoidella cavatica* décrite par CHAPPUIS (1957) par leurs branches furcales très courtes et par le nombre des soies sur l'endopodite P2 et P4. L'article terminal de l'endopodite P2 porte, dans *Elaphoidella cavatica* cinq soies, chez la nouvelle espèce, cet article porte quatre soies. Chez la nouvelle espèce, l'article basal de l'endopodite P4 porte une soie interne, tendis que une telle soie manque chez *Elaphoidella cavatica*. D'autre part on peut constater les différences dans la structure de P5 de la femelle. Basoendopodite P5 porte, dans l’espèce *Elaphoidella cavatica* trois épines, chez *E. brevicaudata* n. sp. on observe quatre épines.
En la comparant avec *Elaphoidella croatica* décrite par PETKOVSKI (1959) de l'interstitielle de la rivière Neretva, la principale différence se relève au niveau de la furca qui est nettement plus courte dans la nouvelle espèce. Elle diffère de cette espèce par le nombre de soies des endopodites P2 et P4. Une différence valable pour les deux espèces à la fois, est la présence sur le premier article de l'endopodite de P4 une soie interne, tandis que chez *E. croatica* une telle soie manque.

S'il faut chercher quelque différence, en se basant sur les exemplaires mâles, entre les espèces citées plus haut et la nouvelle espèce, nous devrions mettre plus près de différence consiste ici, en la présence de deux, au lieu de trois soies chez *Elaphoidella jeannelli* et *E. charon* ou quatre soies chez *E. italica* et *E. croatica* sur le deuxième article de l'endopodite de P2. On doit souligner que l'article distal de l'endopodite de P4 chez la nouvelle espèce porte seulement deux épines au lieu de trois (*E. phreatica, E. charon, E. italica, E. croatica*) et quatre chez *E. jeannelli*.

En tenant compte de ces variations la chétotaxie des endopodites P2-P4 et P5 peut s'établir de la façon suivante:

<table>
<thead>
<tr>
<th>Tableau 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espèce</td>
</tr>
<tr>
<td>Femelles</td>
</tr>
<tr>
<td>E. breviceuda</td>
</tr>
<tr>
<td>E. phreatica</td>
</tr>
<tr>
<td>E. jeannelli</td>
</tr>
<tr>
<td>E. charon</td>
</tr>
<tr>
<td>E. cavatica</td>
</tr>
<tr>
<td>E. croatica</td>
</tr>
</tbody>
</table>

| Espèce | P2 | 1 | 2 | P3 | 1 | 2 | P4 | 1 | 2 | P5 | Benp. | Exp. |
| Mâles |
E. breviceuda	1	1 1 0	1	1	0 2 0	0	0 2 0	-	4
E. phreatica	0(1)	2 2 0	0(1)	1	0 2 0	0	1 1 1	-	4(2)
E. jeannelli	1	2 1 0	?	?	?	0	2 1 1	-	4
E. charon	1	2 1 0	?	?	?	0	1 1 1	-	4
E. italica	1	2 2 0	0	1	0 2 0	0	1 2 0	-	4
E. cavatica	1	2 2 0	?	?	?	0	1 1 1	-	4
E. croatica	1	2 2 0	1	1	0 2 0	0	1 1 1	-	4

Si on fait une comparaison entre la nouvelle espèce et des espèces ci-dessus, on constate qu'elles ont une deuxième soie interne sur l'article distal de l'endopodite P4 couverte des spinules dans sa moitié inférieure. D'autre part le article terminal de l'exopodite P4 avec les épines 3 à 5 munies de dards grossiers.

Il apparaît donc que la nouvelle espèce et les espèces *E. phreatica* de Transylvanie, Italie, Bulgarie et de Roumanie (Banat); *E. jeannelli* des grottes près de Postoina (Slovénie) et de la grotte Baradla près de Aggtelek (Hongrie du Nord); de la grotte Bekebarlang et des environs de Vicence; de Bulgarie et
d’Italie; *E. cavatica* de la grotte de la Tièrre (Ain, France) et *E. croatica* de Bosnie, appartiennent toutes à une même lignée. La même opinion partage CHAPPUIS (1957). D’après cet auteur ces espèces sont issues d’une même forme qui a évolué différemment dans différents massifs montagneux où elles ont peuplé les eaux souterraines.

Ces différences me semblent suffisantes pour imposer une séparation entre espèces qui sont sans doute étroitement apparentées au sein d’une lignée phylogénétique en évolution, mais néanmoins distinctes.

En effet, les espèces du genre *Elaphoidella* (Chappuis) accusent une grand variabilité, c’est pourquoi leur détermination présente des difficultés. Parmi les harpacticoides souterrains, il y a des espèces très constantes et des espèces variables, même dans le cadre de la même population, comme par exemple *E. phreatica* (Chappuis).

La position systématique de l’espèce est délicate à établir car cette forme présente des affinités avec certains espèces du genre.

En discutant l’espèce *Elaphoidella phreatica* PETKOVSKI (1972) fait une révision de la position systématique et affirme que cette forme est très variable et qu’il s’agit probablement d’une espèce collective.

La position systématique de l’espèce *E. phreatica* a été reposé de la découverte de cette forme par KARANOVIC (2001) à Monténégro. Les exemplaires étudiés par cet auteur présentent de grandes variations de taille (male 0.427 à 0.546 mm; femelle de 0.498 à 0.556 mm) et d’armature des pattes natatoires. KARANOVIC (2001) complète la diagnose de l’espèce *E. phreatica* par des observation sur la variabilité des 68 exemplaires femelles et mâles, récoltés dans plusieurs localités. En se basent du matériel de Monténégro, cet auteur partage l’opinion de PETKOVSKI (1972) et considère l’espèce *E. phreatica* comme une espèce variable et polymorphe. Etudiant plusieurs exemplaires de *E. phreatica* de Monténégro, il constate que l’espèce est variable surtout en ce qui concerne la chétotaxie des pattes natatoires. Il admet l’hypothèse que *Elaphoidella cavatica* Chappuis, 1957, *E. croatica* Petkovski, 1959, *E. oglassae* Cottarelli et Torrisi, 1976 et *E. italica* Pesce et al., 1987 sont synonymes à *E. phreatica*. Karanovic mentionne que les espèces citées plus haute sont très proches à *E. phreatica* en ce qui concerne l’armature des pattes thoraciques, l’opercule anal et l’ornementation des somites. En ce qui concerne la structure des mandibules, maxilles et maxillules de la femelle et du mâle qui ont un valeur systématique, Karanovic ne montre pas ces caractères comme un criterium sur pour clarifier la position systématique de l’espèce *E. phreatica*.

D’après mon avis cependant, une telle révision de la position systématique de l’espèce *E. phreatica* sans une position géographique et écologique est plus difficile de tirer des conclusions. Il est nécessaire d’étudier en détail un nombre plus grand d’exemplaires de divers régions avant poser les espèces citées par Karanovic en synonyme. Dans ce cas nous avons mis en doute la valeur systématique proposé par Karanovic.
Fig. 1-9. *Elaphoidella cf. leruthi* Chappuis, femelle: 1 - segment anal et furca dorsale; 2 - segment anal et furca ventrale; 3 - A1; 4 - A2; 5 - Maxillipède; 6 - aire génital; 7 - Mandibule; 8 - Maxillule; 9 - Maxille
Elaphoidella cf. leruthi Chappuis, 1937 (Fig. 1-16)
Matériel examiné: 1 femelle.
Localité: Source du Figuier-Janoye; commune de Penne, Tarn; Décembre 1999; Coll. C Bou.

D'après la clé de détermination des espèces du genre Elaphoidella, proposée par APOSTOLOV (1985) l'exemplaire femelle trouvé par nous, appartient au groupe simplex. Sans disposer d'un dessin d'ensemble de la forme type, en me basant uniquement sur la description et les dessins de Chappuis, j'ai trouvé des différences entre la forme type d'une part et mon exemplaire de l'autre; celles-ci se distinguent de la type par les traits suivants:

- longueur du corps;
- nombre des spinules sur l'opercule anal différent;
- deux derniers somites abdominaux sans ornementation;
- nombre des soies latérales des branches furcales, une soie chez notre femelle, deux soies chez l'espèce type;
- nombre des épines sur l'endopodite P4 variable.

L'analyse morphologique de deux formes trouvées dans les eaux souterraines d'une région nous permet de comparer les deux populations. Sans doute, l'espèce trouvée par nous appartient à l'espèce type, Elaphoidella leruthi. Le manque d'assez de matériel ne nous donne pas la raison de décrire l'exemplaire étudié comme une espèce différente. Les petites variations morphologiques sont probablement liées à l'hétérogénéité des milieux peuplés par les individus - grottes, sources et fontaines.

Évidemment, la comparaison entre les deux espèces, citées plus haut, d'une région, montre qu'elles sont plus ou moins alliées et différant souvent seulement par des écarts peu importants. Elles sont sans doute étroitement apparentées au sein d'une lignée phylogénétique en évolution. Ces caractères n'auraient pas de valeur taxonomique, car inconstants.
Pour compléter la description de l’espèce *Elaphoidella leruthi*, nous donnons ci-dessous des dessins qui illustrent les caractères morphologiques de valeur taxonomique de cette espèce.

Fig. 10-16. *Elaphoidella cf. leruthi* Chappuis, femelle: 10 - P1; 11 - P2; 12 - P3; 13 - P4; 14 - endopodite P4; 15 - P5; 16 - œufs
Remerciements

Je remercie M. Claude Bou qui m'a aimablement confié le matériel de détermination. Il trouvera ici l'expression de mes plus vifs remerciements.

Bibliographie

APOSTOLOV A. Sous presse. Copépodes harpacticoïdes stygobie de France. 1. Le genre Ceuthonecetes Chappuis, 1929 avec une description de deux formes nouvelles. - Crustaceaana.

Reçu le 23.01.2002

Adresse de l'auteur:
Dr Apostol Apostolov
Izgrev, Bl. 35, bx. R
8008 Bourgas, Bulgarie

52
Харнакмукоди от подземните води на Франция 5.
Описание на един нов стигобионт от рог *Elaphoidella sensu* Apostolov, 1985, *Elaphoidella brevicaudata* n. sp. и някои бележки върху вида *Elaphoidella cf. leruthi* Chappuis, 1937

Апостол АПОСТОЛОВ

(Резюме)

При определение на материалиите, предоставени от г-р Cl. Bou, събраны от подземните води в департамент Alpes de Haute Provence и от избор в района на община Penne, Tarn във Франция през 1999 г., установихме два вида от рог *Elaphoidella Chappuis*. От тяхът вида Elaphoidella brevicaudata n. sp. е нов за науката. По своите систематични белези той стои много близко до някои вече известни представители на този рог - E. phreatica и E. jeanneli, съобщаван за България, Македония и Италия. Новият вид показва сходство с E. croatica от Хърватия, както и с вида E. italica, описан от Италия. От посочените вида се различава по брой на четинките върху ендоподиум P4 и по-късата фурка при женските екземпляри. При мъжките различията засягат броя на четинките върху ендоподиум P2 и P4 и устройството на фурката.

Вторият вид показва голямо сходство с вида E. leruthi, описан от избор в Белгия, а по-късно намерен и във Франция. Различията от типичния вид засягат размерите на тялото, броя на шипчетата върху оперкулума, липсата на орнаментация на гвама последни сегмента на тялото и броя на четинките върху ендоподиум P4. Вероятно вида показва по-добре изразена вариабилност, поради което гибаем и пълните рисунки на намерения от нас женски екземпляри.

В текста е гускуптирани предложението на Красносил (2001) за синонимизиране с вида E. phreatica на няколко вида от различни географски области. Авторът изразява несъгласие с това предложение, той като синонимизирането е направено само по някои морфологични белези, подложени на силна изменчивост, без да се вземат под внимание устройството на мантибулата, максилата и максилулата, които имат систематично значение, както и зоогеографското разпространение на вида в емпирични и тяжната екология.
Международният проект "Fauna Europaea" и участието на България в него

Златозар БОЕВ

Официалното подгледяне на този грандиозен и уникален проект е "Европейските постъпления в инвентаризирането на биологичното разнообразие и инфраструктурите". Определен е като "Най-мащабният проект в областта на систематиката на живата природа след Карл Линей". Основната му цел е да събере и представи на национално равнище данни за географското разпространение на всички известни и публикувани досега видове сухоземни и сладководни многоокотъчни животни на европейския континент. Очаква се да се изграби информационна база-данни за названията и разпространението на за около 100 000 вида. Това ще позволи да се установят пропуските във фаунистичните прочуваания, както и да се установят странните с най-богато биоразнообразие. Така Европа ще е първият континент с инвентаризирана фауна на такова равнище.

Проектът е от Пятата рамкова програма за изследователско и технологично развитие на Европейската комисия и държавно-членовете на Европейския Съюз със срок на действие 01.03.2000-01.03.2004. Финансиран е от Европейската комисия и се изпълнява в програмата "Енергия, околната среда и устойчиво развитие".

Проектът се ръководи от три институции - Зоологическата музей при Университета в Амстердам, Националният природонаучен музей в Париж и Зоологическата музей при Университета в Копенхаген. В проектите "Fauna Europaea" и "Fauna Europaea - NAS" участвали са 400 експерта от 36 институции от Европа. Брои на участвниците е няколко хиляди. За новоприеманите във въпроса Управителния комитет на проекта е разширен с един нов член - Зоологическата музей и институт при Полската академия на науките във Варшава.

Базовата организация за изпълнението на проекта във Вългария е Националният природонаучен музей в София. За национален координатор е определен ст.н.c. Гл. н. Златозар Боев. Той изпълнява и задълженията за "ключов експерт" за гробначните животни. Ст.н.с. П ф., г-р Петър Берон е "ключов експерт" за ненасекомите безърбични животни, а ст.н.с. П ф., г-р Алекси Попов - "ключов експерт" за насекомите. За целите на проекта са приложени над 50 специалисти-максомонисти от София, Пловдив, Плевен, Стара Загора, Костоян и гр.

Очакваният край продукт е изграждане на CD-ROM и еъбенуално книга със събранието данни. Повече информация може да се получи на адрес: www.faunaeur.org
Trois nouvelles espèces des genres *Cordioniscus* et *Trichoniscus* (Isopoda: Oniscidea) et nouvelles données sur les Isopodes terrestres de la Bulgarie

Stoïtze ANDREEV

Abstract. Current article provides descriptions of 3 new species of terrestrial woodlice (Isopoda: Oniscidea), *Cordioniscus schmalfussi* n. sp. (Rhodopes), *Trichoniscus stoevi* n. sp. (Central Stara Planina) and *Trichoniscus petrovi* n. sp. (Rhodopes), found in different caves in Bulgaria. Other 31 species from the Ligiiidae, Styloniscidae, Trichoniscidae, Philosciidae, Plathyarthridae, Cylisticidae, Trachelipidae and Armadillidiidae are reported and their distribution in Bulgaria analysed. Genus *Illyrionethes* is new to the country's fauna. The material is preserved in the NMNH, Sofia.

Key words: Isopoda, Oniscidea, new species, caves, Bulgaria, Rhodopes, Stara planina

Cet article traite aussi les résultats des recherches effectuées pendant une assez longue période par P. Beron, V. Beshkov, A. Popov, ainsi que par l'auteur de l'article, sur le territoire entier du pays.

Les renseignements sur le genre *Cylisticus* pour lequel on disposait de données relativement restreintes occupent une place importante.

Un intérêt particulier représente la découverte de l'espèce d'origine gondwani *Cordioniscus schmalfussi* n. sp. dans les Rhodopes Occidentales. Le genre *Cordioniscus* est l'unique représentant en Europe de la famille Styloniscidae, répandue en Amerique Centrale, en Amerique du Sud et en Afrique méridionale. Des 13 espèces connues du genre *Cordioniscus* 12

Actuellement on connaît en Bulgarie 13 espèces du genre *Trichoniscus* (ANDREEV, 2000). Avec la découverte de deux nouvelles espèces *Trichoniscus petrovi* n. sp. et *Trichoniscus stoovi* n. sp. leur nombre atteint 15 espèces. La plupart sont endémiques pour la Bulgarie et la péninsule Balkanique. La seule espèce largement répandue c'est *Trichoniscus pusillus*. Ayant en vue les espèces répandues en Serbie, en Slovénie, en Croatie, en Macédoine et en Grèce on pourrait accepter la thèse de VANDEL (1960) "...que le type trichonisciien ait pris naisance dans la chaîne des Alpes..." et on pourrait supposer que le centre éventuelle de répartition de ce genre soit la péninsule Balkanique.

Je profite de l'occasion pour exprimer mes remerciements les plus sincères à mes collègues du Muséum National d'Histoire Naturelle à Sofia pour les matériauX prêtés.

Les holotypes, les paratypes et tous autres matériauX sont conservés dans les collections du Muséum National d'Histoire Naturelle à Sofia.

Famille de Ligiiidae

Ligidium herzegovinense Verhoeff, 1901

Espèce epigée, propre aux territoires de Serbie, Bosnie - Herzégovine, Macédoine, Grèce et en Bulgarie.

Ligidium germanicum Verhoeff, 1908

Espèce epigée. Cette espèce est signalée dans les pays de l'Europe Centrale et Orientale. Au sud elle atteint la Grèce.

Famille des Styloniscidae

Cordioniscus schmalfussi n. sp.*

Matériel étudié: Holotypes: un mâle ayant 2.2 mm de longueur, provenant de la grotte Shepran dupka; Paratypes: 2 ♂♂♂, 4 ♀♀.

Qualification écologique: troglobie.

Caractères somatiques: longueur des mâles 2.2 - 2.5 mm; femelles - 2.5-3 mm. Coloration - parfaitement blanche sans trace de pigment. Appareil oculaire absent.

Caractères tégumentaires: le corps granuleux. Ont compte quatre rangées de granulations sur le vertex. Les téguments I - V portent deux rangées de granulations, disposés dans la partie postérieure du tergite. Les segments VI et VII et les segments pleonales sont lisses.

Appendices: Antennules (Fig. 1, B) formés de trois articles. Le troisième porte 6 aesthetasc. Antennes (Fig. 1, A): Le pédoncle constitué de 5 articles, dont le quatrième et le cinquième portent une rangée des trois ou quatre tubercules écailleux. Le flagelle de l’antenne formé de quatre articles, peus distincts, recouverts de fins cils.

Caractères sexuels mâles: Pérèciopode VII (Fig. 1, C) dépourvu de différenciation sexuelle, mais plus robuste que chez les femelles.

Pléopode 1 (Fig. 1, D) - L’exopodite triangulaire, élargie à sa base. Le bord externe faiblement concave. L’endopodite biarticulé. Les deux articles de l’endopodite à peu près égaux. L’article distale fin et grêle.

Pléopode 2 (Fig. 1, D) L’exopodite piriforme, garni distalement des deux épines. L’endopodite biarticulé. L’article distale deux fois et demi plus long que l’article basale.

L’apophyse génitale dans la partie médiane renflée; distalement avec des bords convergents et l’apex très fin.

Affinités. La nouvelle espèce *Cordioniscus schmalfussi* n. sp. se distingue nettement de toutes les espèces du genre *Cordioniscus* par la conformation de l’exopodite du pléopode II et par l’apophyse génitale.

Famille des Trichoniscidae

Hyloniscus flammula Vandel, 1965

Espèce endémique. Troglobie. La répartition de l’espèce est limitée dans les grottes et les gouffres de la montagne Stara planina du Nord Ouest.

* Dédié à l’émienzo zoologue allemand Dr H. Schmalfuss pour ses contributions exceptionnelles dans le domaine des isopodes terrestres.
Fig. 1. *Cordioniscus schmalfussi* n. sp., holotype ♂. A - antenne; B - antennule; C - péréiopode VII; D - pléopode I; E - apophyse génitale; F - pléopode II; G - extrémité de l'endopodite de pléopode II à un grossissement plus fort.
Hyloniscus riparius (C. L. Koch, 1838)

Espèce épigée, originaire de l'Europe Centrale et Orientale.

Hyloniscus sp.

Bulgaronethes haplophalmaidoides Vandel, 1967

Genre et espèce endémiques. Troglobie. L'aire de répartition de cette espèce est limitée dans les régions de la ville Peshtera et Velingrad.

Illyronethes sp.

Ce genre est neuf pour la faune de la Bulgarie. Troglobie. Malheureusement le status de cette espèce reste inconnu pour la raison que l'unique exemplaire mâle est gravement mutilé.

Grotte Starcheltza, v. Golešhevo, distr. Blagoevgrad, 02.05.1994, 1 ♂, 2 ♀, 1 juv., leg. B. Petrov.

Balkanonicus beroni Vandel, 1965

Genre et espèce endémique. Troglobie. Cette espèce n'a été rencontré que dans quelques grottes dans les Rhodopes Occidentales.

Balcanonisicus corniculatus Verhoeff, 1926

Genre et espèce endémiques. Troglobie. Cette espèce est propre aux nombreuses grottes de la Stara planina Occidentale.

Balcanonisicus minimus Vandel, 1967

Trichonicus anophthalmus Vandel, 1965

Espèce endémique. Troglobie. Cette espèce est répandue dans la région comprise entre la ville Vratza et la ville Montana.

Trichonicus bononiensis Vandel, 1965

Trichoniscus bureschi Verhoeff, 1926

Espèce endémique. Troglophile. L’espèce peuple les cavités souterraines dans la Stara planina Occidentale et Centrale. Au Sud l’espèce atteint le village Tzérovo dans le défilé de la rivière Iskár.

Trichoniscus garevi Andreev, 2000

Espèce endémique. Troglobie. Cette espèce n’a été recueillie, que dans quelques grottes du Prébalkan.

Trichoniscus petrovi n. sp.*

Matériel étudié: Holotype - un mâle ayant 2.2 mm de longueur, provenant de la grotte Pirkovskata et 10 paratypes (2 mâles et 8 femelles de grottes Pirkovskata et Bjaloto kamene).

Qualification écologique: troglobie.

Caractères somatiques: les mâles ont 2 - 2.2 mm de longueur, les femelles 2.5 - 2.9 mm. Coloration blanc de lait; pas de pigment. Le corps grêle et allongé.

Appendices: Antennules constitués de trois articles; les deux première à peu près égaux; le troisième portant quatre aesthetascas. Antennes (Fig. 2, A): Relativement longues, formées de cinque articles; L’article 5 orné d’une

* Dédié à notre collègue et ami Bojan Petrov.
Fig. 2. *Trichoniscus petrovi* n. sp., holotype ♂. A - antenne; B - péréiopode VII; C - pléopode II; D - pléopode II d' une exemplaire de la grotte Bjaloto kamene; E - pléopode I; F - apophyse génitale
rangée de trois tubercules écailleux. Flagelles de trois articles dont le second porte deux longs aesthetasc. Le troisième garni d’un bouquet de longs cils.

Caractères sexuelles mâles: Péréiopode VII: différencié; le basis à bord tergale distalement porte un tubercule garni d’une rangée de fins cils; L’ischion à bord sternale avec un duplication; Le carpus forme une protubérance dans la partie distale.

Pléopode I (Fig. 2, E): exopodite à base quadrangulaire, le bord externe se rétrécie brusquement et forme dans la partie terminale une lobulation triangulaire. Le bord interne est faiblement convexe. L’endopodite robuste et formé de deux articles. L’articles distale avec des côtes parallèles, convergent dans la partie de l’apex. Dépourvu de striation transversale.

Pléopode II (Fig. 2, C): Endopodite de second pléopode mâle à article distale très allongé, fin et grêle. Chez l’exemplaire de la grotte Bjaloto kamene (Fig. 2, D) la partie basale est élargie jusque la moitié de l’article, tandis que chez l’holotype n’atteigne pas que une troisième part de longueur de l’article.

L’apophyse génitale avec des bords parallèles, convergent dans la partie distale.

Affinités. Cette espèce est remarquable et par là même facile à distinguer des autres espèces bulgares du genre *Trichoniscus* en raison de la forme si particulière de l’exopodote du premier pléopode et par la différenciation sexuelle du péréiopode VII.

Trichoniscus pusillus pusillus Brandt, 1833

Trichoniscus rhodopiense Vandel, 1965

**Trichoniscus stoevi n. sp.*

Matériel étudié: Holotype: un mâle ayant 2.6 mm de longueur; paratypes 2 exemplaires mâles et 4 exemplaires femelles.

Qualification écologique: trogloble.

Caractères somatiques: Taille - mâle: 2.4 - 2.26 mm; femelles: 3 - 3.2 mm Coloration: parfaitement blanche. Appareil oculaire absent.

Caractères tegumentaires: les téguments sont lisses, mais très finement s étacés, en raison de l’existence de fins soies-écailles. Les pléonites sont glattes.

Appendices: Antennule (Fig. 3, B) de trois articles; premier article le plus fort et robuste; article 2 portant sur le coté quelques soies; article distale garni à son extrémité d’une épine et de trois aesthetascas.

Antennes (Fig. 3, A): article cinque de l’antenne orné de quatre ou cinque tubercules écailleux. Flagelle composé de trois articles peu distincts, dont le dernier terminé par un pinceau de longs cils.

Caractères sexuels mâles: Péréiopode VII (Fig. 3, C) dépouvé de caractères sexuels particuliers, mais le méros et le carpus légèrement plus larges chez les mâles que chez les femelles.

Péréiopode I (Fig. 3, F): L’exopodite en forme triangulaire, à pointe distale recourbée, aussi long que large. Le bord externe fortement incliné et dans la partie distale forme un lobe bien saillant. L’endopodite (Fig. 3, F, G) biarticulé; l’article distale terminé par une pointe très nettement striée. Péréiopode II (Fig. 3, E) - l’exopodite à forme rectangulaire irrégulier; l’article distale de l’endopodite se termine par une pointe extrêmement fine.

L’apophyse génitale (Fig. 3, D) est fortement élargie dans la partie médiane et elle termine par une pointe grêle et fine.

* Dédié à notre collègue et ami Pavel Stoev.
Fig. 3. *Trichoniscus stoevi* n. sp., holotype ♂. A - antenne; B - antennule; C - péréiopode VII; D - pléopode II; E - apophyse génitale; F - pléopode I; G - pléopode I à un grossissement plus fort
Affinités. La nouvelle espèce *Trichoniscus stoevi* n. sp. se rattache au groupe des espèces bulgares du genre *Trichoniscus* avec de striation transversale sur l'endopodite de pléopode, mais elle en diffère par la conformation de l'exopodite du pléopode I, par la forme de l'apophyse génitale et par le péréiopode VII.

Trichoniscus tenebrarum Verhoeff, 1926

Espèce endémique, troglobie. Cette espèce habite les grottes et les gouffres de Stara planina Centrale et du Préballkan.

Trichoniscus sp.

Beroniscus capreolus Vandel, 1967

Espèce endémique, troglobie, connue seulement de la grotte Parnitzite près du village Bejanovo.

Bulgaroniscus queorguiievii Vandel, 1967

Genre et espèce endémiques. Troglobie. Cette espèce est assez largement répandue dans la partie ouest de la Stara planina Occidentale.

Cypioniscellus bulgaricus Vandel, 1965

Espèce endémique. Troglobie. Cette espèce est assez rare et peuple quelques grottes dans les environs de la ville Vratza.

Haplolithalmus danicus Budde-Lund, 1885

Monocyphoniscus bulgaricus Strouhal, 1939

Espèce endémique. Troglophile. Cette espèce mène à l’ordinaire un mode de vie endogè; mais on la rencontre également dans les grottes. Elle est répandue dans les Rhodopes Orientales jusqu’à la mer Noire.

Tricyphoniscus bureschii Verhoeff, 1936

Genre et espèce endémique. Troglobie. L’arcade de cette espèce est localisée dans le Nord de la Stara planina Centrale et à l’Est de Stara planina Occidentale.

Famille des Philosciidae

Chaetophiloscia hastata Verhoeff, 1929

Espèce épigée, habitant de toute éventualité un large aréale en Bulgarie du Sud-Est, Italie, Asie Mineure, Grèce.

Famille des Platyaarthridae

Plathyarthrus hoffmannseggi Brandt, 1833

Espèce expansive. Endogée, myrmécophile, d’origine méditerranéenne.

Famille des Cylisticidae

Cylisticus convexus (De Geer, 1778)

Famille des Trachelipidae

Trachelipus bulgaricus bulgaricus Verhoeff, 1929

Espèce endémique. Troglophile. Cette espèce est relativement rare. Elle est connue des grottes de la partie ouest de la Stara planina Central.

Trachelipus rathkei Brandt, 1833

Espèce épigée, humicole et lithophile. Trogloxène. C'est une forme expansive et son aire d'habitat occupe la plus grande partie de l'Europe centrale et orientale. Cette espèce est importée par l'homme en Amerique du Nord, Mexique et Argentine.

Trachelipus myrmicidarum (Verhoeff, 1936)
Espèce endémique. Épigée, humicole et lithophile. Cette espèce est répandue dans la Bulgarie du Sud-Est.

Methoponorthus pruinatus (Brandt, 1833)
Espèce cosmopolite. Épigée, trogloxène.

Porcellium recurvatum Verhoeff, 1929
(= P. witoschicum Verhoeff, 1936)

Armadillidium vulgare (Latreille, 1804)

References

DALENS H. 1970. Un nouveau représentant du genre Cordioniscus (Isopoda, Oniscoidea,
STROUHAL H. 1939. Landasseln aus Balkanhöhlen gesammelt von Prof. Dr. K. Absolon. 8
Mitteilung: Bulgarien und Altserbien (Zugleich 24. Beitrag zur Isopoden Fauna des
(2): 243-270.
VANDEL A. 1967. Les Isopodes terrestres et cavernicoles de la Bulgarie (seconde partie). -
VANDEL A. 1968. Description d'un nouveau représentant du genre Cordoniscus (Crustacea,
Isopoda, Oniscoidea, Styloniscidae) suivi de considération sur les voies de migration de
VERHOEFF K. 1926. Über Isopoden der Balkanhalbinsel, gesammelt von Herrn Dr I. Buresch.
VERHOEFF K. 1929. Über Isopoden der Balkanhalbinsel, gesammelt von Herrn Dr. I. Buresch.
VERHOEFF K. 1936. Über Isopoden der Balkanhalbinsel, gesammelt von Herrn Dr I. Buresch.

Reçu le 16.09.2002

Adresse de l’auteur:
Dr Stoïtze Andreev
Muséum National d’Histoire Naturelle
Boul. Tzar Osvoboditel 1
1000 Sofia, Bulgarie
Три нови вида от рог *Cordioniscus* и рог *Trichoniscus* (Isopoda: Oniscidea) и нови данни за разпространението на сухоземните изоподи в България

Сточев АНДРЕЕВ

(Резюме)

В статията се съобщават три нови за науката вида и нови данни за разпространението на още 31 вида сухоземни изоподи. Новият вид *Cordioniscus schmalfussi* n. sp., намерен в Западните Рогони, е втори представител в България на гондванското семейство Styloniscidae.

Новите видове *Trichoniscus petrovi* n. sp. и *Trichoniscus stoevi* n. sp. са описани от Западните Рогони и Средна Стара планина. С тях броят на представителите на рог *Trichoniscus* в България нараства на 15 вида.

Нов за фауната на България е рог *Ilyronethes*, но вида не може да се определи, поради силно повредението единствен мъжки екземпляр.

В работата се съобщават много нови находища за 31 вида от 8 семейства - Ligiidae, Styloniscidae, Trichoniscidae, Philosciidae, Plathyarthridae, Cylisticidae, Trachelipidae и Armadillidiidae. Значително се допълват познанията за разпространението на някои видове и се разширява ареала на *Balcanoniscus beroni*, *Cyphoniscellus gueorguevi*, *Trichoniscus bureschi*, *Trichoniscus rhodopienne* и *Cylisticus convexus*.
Zoological Results of the British Speleological Expedition to Papua New Guinea 1975. 11. Acariformes (Prostigmata): Smarididae
(Trichosmaris papuana sp.n.)

Petar BERON

Abstract. Description of Trichosmaris papuana sp. n. (Acari, Erythraeoidae, Smarididae) from Papua New Guinea (3100 m). The genus Trichosmaris was known only from America (Guatemala, USA and Mexico). Notes on Erythraeoidae of Papua New Guinea.

Key words: Acari, Erythraeoidae, Smarididae, Trichosmaris, Papua New Guinea

As a member of the British Speleological Expedition to Papua New Guinea (1975) I had the chance to collect also some Acari in and outside caves. Among them, several Erythraeoid mites proved to be new for the science.

The material has been collected in New Guinea and New Ireland in the following localities:

New Guinea (PNG):
1. Finim Tel (Western Province). Plateau covered with rainforest, alt. 2260 - 2400 m.
2. Mount Fugilil (Western Province). Summit above the plateau of Finim Tel, the upper part covered with moss forest, alt. 2800 - 3100 m.
3. Telefomin - town in West Sepik Province, rain forest, alt. 1600 -1700 m.
4. Bahrmann Mountains - mountain pass in West Sepik Prov., not far from Finim Tel, alt. 2260 - 2500 m.
5. Bullem - village in Western Province, rain forest at the basis of Hindenburg Wall.
6. Tifalmin - village in West Sepik, alt. 1700 m.
7. Cave Ogon 1, v. Goglme, Simbu (Chimbu) Province.
8. Lae - town in Morobe Prov., rain forest on the sea shore.
9. Mount Wilhelm - from Lake Pinde (3480 m) to the summit (4600 m, the highest point of Papua New Guinea).
10. Urapmin - village in West Sepik, rain forest.

Detailed information about the area of work of the British Speleological Expedition can be found in BROOK D., Ed. (1976). The families Smarididae and Erythraeidae are not entirely unknown in New Guinea and the Bismarck Archipelago, but many of the descriptions are old and need revision. Certainly, the rich tropical environment of these islands harbors plenty of undescribed mites. The studies on Erythraeidae in Irian Jaya and the territory of today's Papua New Guinea started in the 19th century.

1897 - From Friedrich Wilhelm Hafen and Erima (East New Guinea) G. Canestrini describes the new species *Caeculisoma claviger*, *Smaris neoguineana*, *Rhynchoholopus brevipilis* and *Rh. subtilipes*.

1898 - In his list of 80 species of mites from New Guinea Canestrini includes also 11 sp. of Erythraeidae, only *Rhynchoholopus latus* being new for the science. In this list we can see some species, the presence of which in New Guinea is quite unlikely (the Southamerican *Caeculisoma tuberculatum* Berlese and the European *Rhynchoholopus* - now *Leptus - nemorum* Koch and *Rhynchoholopus* - now *Leptus - calvescens* Berlese).

1898 - From Ralum (New Britain) Kramer describes "*Rhynchoholopus* poriferus." In the same paper also some European species, now considered members of *Leptus*, are listed.

1905 - From New Guinea Oudemans describes "*Erythraeus* debeauforti" on ants (now *Leptus debeauforti*).

1908 - From New Guinea and New Britain Oudemans lists (p. 107-109) 12 species of Erythraeidae.

1910 - Oudemans describes "*Erythraeus* volzi" (now *Leptus volzi*).

1941 - From New Guinea Gunther describes "*Belaustium*" (now *Abrolophus*) *novaeguinensis*.

The knowledge on Erythraeidae of New Guinea is based mainly on the modern standards set by Southcott in the following papers:

1948 - *Clipesoma copiolarum* Southcott from "Babia, in the Aitape Region of New Guinea" and *Hauptmannia aitapensis* Southcott from the same area.

1966 - *Charletonia falcata* Southcott
1972 - *Callidosoma rostratum* Southcott.
1984 - *Leptus draco* Southcott
1993 - key of the *Leptus* species from Australia and New Guinea
1999 - Four new species of *Leptus* from New Guinea
Later HAITLINGER (1990) described *Leptus boggohoranus* from New Guinea.

List of the species belonging to Erythraeidae from New Guinea and adjacent islands:
Fam. Smarididae
Subfam. Hirtiosomatinae

Trichosmaris papuana Beron, sp. n. - New Guinea
Clipeosoma copiolarum Southcott, 1948 - New Guinea

Fam. Erythraeidae
Subfam. Leptinae (all from New Guinea)

Subfam. Callidosomatinae

Caeulisoma mouldsi Southcott, 1988 - New Guinea
Caeulisoma sp.n. 1 Beron, in print - New Ireland
Caeulisoma sp.n. 2 Beron, in print - New Ireland
Caeulisoma sp.n. 3 Beron, in print - New Ireland
C. darwiniiense Southcott, 1961- Australia and New Guinea
Charletonia falcata Southcott, 1966 - New Guinea
Ch. volzi (Oudemans, 1905) - New Guinea
Callidosoma rostratum Southcott, 1972 - New Guinea
Hauptmannia altapensis Southcott, 1948 - New Guinea
Abrolophus novaeguineensis (Gunther, 1941) - New Guinea

The following taxa, published by Canestrini (1897, 1898) and Kramer (1898), are doubtful, inadequately described or unlikely to live in Melanesia: *Smaris neogueineana* Canestrini, 1897; "*Rhyncholophus* brevipalpis" Canestrini, 1897; *Rh. subtilipes* Canestrini, 1897; *Rh. nemorum* C.L. Koch, 1836; *Rh. calvescens* Berlese, 1888; *Rh. sagittatus* Canestrini, 1898; *Rh. latus* Canestrini, 1898; *Rh. poriferus* Kramer, 1898.

The present paper also gives a description of a new species of *Trichosmaris* (Smarididae), a genus known so far only from North America.

Fam. Smarididae
Subfam. Hirstiosomatinae
Genus *Trichosmaris* Southcott

The genus *Trichosmaris* Southcott, 1963 has been created to include the taxa *T. dispar* Southcott, 1963, *T. d. dentella* Southcott, 1963 and *T. jacoti* (Southcott, 1946) from Guatemala, U.S.A. and Mexico. The new species from New Guinea extends considerably the areal of the genus.
Trichosmaris papuana sp. n.

Material: 1 ♂ (holotype), New Guinea, Western Province, top of Mt. Fugilil, 3100 m, 30.9.1975, P. Beron leg.

Description (Fig.1): Crista long 378 μm. On the anterior sensillary area 2 sensillae, thick and ciliated, similar to those of T. jacoti, and 5 (?) short and ciliated ordinary setae, similar to dorsal setae (T. jacoti has 10 such setae, much more elongated, T. dispar has 18 more elongated setae).

Anterior sensillae of T. dispar Southcott are more irregularly ciliated (distal half different from proximal). Anterior sensilla of T. papuana n. sp. 35 μm long, posterior sensilla 60 μm long (Pars clavata 42 μm, flagellum 18 μm).

Fig. 1. Trichosmaris papuana sp. n. - dorsal view

76
References

Received on 10.12.2002
Зоологически резултати от Британската спелеологична експедиция в Папуа Нова Гвинея 1975. 11. Acariformes (Prostigmata): Smarididae

Trichosmaris papuana sp.n.

Петър БЕРОН

(Резюме)

По време на работата си в Папуа Нова Гвинея през 1975 г. авторът е събрал представители на Erythraeoidae (Acariformes: Prostigmata). Между тях е установен еден нов вид за науката: *Trichosmaris papuana* sp. n. (Smarididae, Hiristiosomatinae) от о. Нова Гвинея (3100 м). Това е третият вид от рог *Trichosmaris Southcott*. Рогът е познат досега само от Гватемала, САЩ и Мексико.
The scutigeromorphs (Chilopoda: Scutigeromorpha) in the collection of the National Museum of Natural History, Sofia

Pavel STOEV

Abstract. This paper is devoted to the treatment of the Scutigeromorpha collection in the National Museum of Natural History, Sofia. Seven species, belonging to the Scutigeridae Gervais, 1837 and Pselliodidae Würml, 1978, are reported from 14 countries in Europe, Asia, South and Central America. Thereuonema syriaca Verhoeff, 1905 and Thereuopoda longicornis (Fabricius, 1793) are reported for a first time from Pakistan and Nepal, respectively. Two records from Brazil are based on a material from the Museo de Zoologia da USP, Sao Paulo, Brazil.

Key words: Chilopoda, Scutigeridae, Pselliodidae, Faunistics, Europe, Asia, South and Central America

Introduction

In terms of systematics Scutigeromorpha is the least explored order of class Chilopoda. Despite research, which began as early as Linnaeus, and the scores of species named by prolific authors like George Newport, Fr. Meinert, Erich Haase, Karl Wilhelm Verhoeff, Ralph Chamberlin since then, no analysis of the taxonomically significant characters nor attempts at working out a modern classification, based on them, were ever made. Just recently, in a number of papers (Würml, 1972, 1973a, b, 1974a, b, c, 1975a, b, 1977, 1978, 1979; Würml & Negrea, 1977) Marcus Würml analysed the external morphology of the order, revised some of the genera (Scutigera, Thereuonema, Thereuopoda, neotropical Psellides) and resolved some long standing taxonomical problems. The lesser degree of knowledge about scutigeromorphs is also due to the fact that the animals are as a rule overlooked by collectors. Usually, only a few specimens from a certain collecting site enter the museum’s collections. Thus, the fauna of many countries in Africa, Asia and the Pacific Islands remain unknown.

This paper puts on record the first part of the Scutigeromorpha collection, gathered mainly by Dr Petar Beron in 10 countries and deposited in the
National Museum of Natural History, Sofia. It deals with species from Europe\(^1\), Central and South America and Asia. Those collected in Africa and Oceania, as well as some still unidentified specimens from South Asia, are left for further investigation. Two records from Brazil are based on specimens, provided by Dr Jean-Jacques Geoffroy (Brunoy), which belong to the Museo de Zoologia da USP, Sao Paulo, Brazil. Additional material comes from the collecting trips of A. Popov, S. Andreev, D. Kozhuharov, B. Petrov, S. Beshkov, T. Ivanova and I. Tsonkov.

Here, I report seven species belonging to two families, Scutigeridae Gervais, 1837 and Pselliodidae Würmli, 1978. Thereuonema syriaca Verhoeff and Thereuopoda longicornis (Fabricius) are reported for the first time from Pakistan and Nepal, respectively.

Systematic part

Family SCUTIGERIDAE Gervais, 1837

Subfamily SCUTIGERINAE Gervais, 1837

Scutigera coleoptrata (Linneus, 1758)

Material examined: *Turkey:* 1 ♀, Sivas Prov., above Zara, 1,570 m, 24.06.2000, S. Beshkov leg. **Greece:** Thrace: 1 specimen, Kavala, 24.04.1942, B. Petrov leg.; ad. ♂, Evros District, Essimi Village, 18.05.1987, P. Beron leg.; ad. ♂, Kavala District, Zigos Village, Mavri Trypa Cave, 28.12.1982, P. Beron, S. Andreev leg.; Thassos Is.: ad. ♂, ♀, Acropolis above Limena, 25.06.1942, I. Tsonkov leg.; ad. ♀, near St. Athanasos Monastery above Limena, 24.06.1942, I. Tsonkov leg.; ♂, Marios Village, 08.06.1943, I. Tsonkov leg.; Kythnos Is.: ad. ♀, Dryopis Village, 16.05.1984, P. Beron leg.; ♂, same locality, 09.05.1987, P. Beron leg.; Serifos Is.: ♂ (Z. Matic det.), Coutalas, 0-300 m alt., 22.04.1984, P. Beron leg.; Salamina Is.: 2 ad. ♀♀, Peristeria Village, Cave of Peristeria, 08.05.1987, P. Beron leg.; Rhodes Is.: ♀, Archangelos Village, 02.05.1987, P. Beron leg.; Karpathos Is.: ♀, juv., Aperi Village, 300 m alt., 03.05.1984, P. Beron leg.; subad. ♂, Arch. Michail, 800-1,000 m alt., 04.05.1984, P. Beron leg.; Kasos Is.: ad. ♀, Aghia Marina, 06.05.1984, P. Beron leg.; Crete: ♂, Sitia District, Aghios Georgios Village, 09.05.1984, P. Beron leg. **Albania:** ♂, Shkodër, 50 m, 09.06.1993, P. Beron leg. **Romania:** ♂, Dobrogea, Babadag Distr., Jurifoca, Capul Dolosman Cape, under stones, on the shore of Razelm Lake, 31.07.2000, B. Petrov, T. Ivanova leg.

\(^1\)These from Bulgaria were published in **Stoev (2002)**

80
Montenegro, Serbia, Bosnia and Herzegovina, Slovenia, Croatia (incl. Cherso Is.), Bulgaria, Romania, Ukraine, Georgia, Russia. CENTRAL EUROPE: South Hungary, South Slovakia, Czech Republic, Austria, Switzerland, South Germany, Luxembourg? ASIA: Turkey (incl. European part and Buyuk Ada Is.), Syria, Lebanon, Palestine, Israel, Jordan, Iran (150 km W Esfahan). AFRICA: Egypt, Libya, Tunisia, Algeria, Morocco, Kenya (above Marsabit town), Tanzania (Uluguru Mts.). INTRODUCED IN: England, Channel Is., Scotland, Denmark, Netherlands, China, Taiwan?, Vietnam, USA, Bermudas (St. David Is.), Canada, Argentina, Uruguay, Cameroon, Republic of South Africa, Mozambique, Zimbabwe, Angola (Sa da Bandeira), St. Helena Is., Cape Verde Islands. PROBABLY INTRODUCED IN: Azores.

Scutigera linceei (Wood, 1867)
Locus typicus: Texas.
Material examined: Cuba: 1 subad., Santiago de Cuba, Gran Piedra, 1,200 m, 25.02.1982, P. Beron leg.
General distribution: South USA (Texas, Arizona), Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Granada, Costa Rica (Turrialba), Panama, Cuba (Siera de la Gran Piedra).
Remarks. This species has first been reported from Cuba by WÜRMLI & NEGREA (1977). Our material comes from exactly the same place (Gran Piedra) their material was gathered.

Subfamily THEREUONEMINAE Verhoeuff, 1905

Thereuonema syriaca Verhoeuff, 1905
Locus typicus: North Syria: Amanus Mt.: Sendschirli.
Material examined: Pakistan: ad. ♀, Baltistan, Karakoram Mts., Skardu Distr., Shigar Village, 2,600 m, under stones near a stream, 22.06.2001, B. Petrov leg.
General distribution: ASIA: South Turkey, Syria, Lebanon (Beirut), Palestine, Israel (Genazareth Lake), Jordan, Iraq (Djebel Hamrin), Saudi Arabia (Wadi Majarish), Yemen, Iran (Buscir, Polour Abali, Sha Pasand, North Gorgan), Pakistan (Shigar). AFRICA: Egypt, Sudan (Mongalla), Kenya (Baluchi).
Remarks. This is the first record of the species from Pakistan, which forms the easternmost border of its range. In another paper (in prep.) I discuss the synonymy of *syriaca* with *Scutigera microstoma* Meinert, 1886, a species described from Ambala and "Kooloo" (=? Kulu) in North India. *Ceramita rubrolineata* Newport, 1844 may be another senior synonym of this species (HAASE, 1887). A re-examination of the types of Newport in the British Museum (Natural History) or collecting a fresh material from North India will resolve the problem. SILVESTRI’s record (1935) of *T. turkestana* from Kargil in Indian Kashmir may actually prove to belong to this species.
Thereuonema tuberculata (Wood, 1862)

Locus typicus: Japan?

Material examined: China: ♀, Tianjin, 21.06.1987, P. Beron leg.; ad. ♂, Beijing, Xiangshan Park, 11.08.1993, P. Beron leg.; subad. ♀, Yunnan, Kunming, 2,200 m, near Bamboo Temple, 29.12.1988, P. Beron leg. North Korea: ad. ♂, North Pyongan Prov., Myohyang Mt., 10-12.06.1987, P. Beron leg.; same province, Myohyang-San, climbing to the upper cave, 500-800 m, 12.08.1982, P. Beron, A. Popov leg.; ad. ♀, South Hwanghat Prov., waterfall near Haeju, 28.08.1982, P. Beron, A. Popov leg.; ♂, same province, near Haeju, Suyang-San, 07.06.1987, P. Beron leg.; ad. ♀, same locality, 1,200 m, 12.08.1982, P. Beron, A. Popov leg.; ad. ♂, South Pyongan Prov., Nampo, shore of Yellow Sea, 18.08.1982, P. Beron, A. Popov leg.; ad. ♀, Kangwon Prov., near Sijung Lake, 05.06.1987, P. Beron leg.; ♂, 2 ♀♀, Tesongsan near Pyongyang, 08.08.1982, P. Beron, A. Popov leg.; 3 ♂♂, Ryongaksan near Pyongyang, 07.08.1982, P. Beron, A. Popov leg.

General distribution: Japan (Tokyo, Yokohama, Fuji Mt., Chichibu Mt., Kanagawa, Kamakura, Kitayo-shinomura, Hiranuma, Takakiyama, Tsushima Is., Nii-jima Is., Honshu Is., Shikoku, Hokkaido?), China (Hong-Kong, Canton, Shanghai, Yang-tse-kiang, Tsingtau, Tsinan, Schantung, Chee-Foo, Jehol, Chaoyang, Kuatschen-dsy, Sandiopa, Sian, Tianjin, Beijing, Kunming, Hang Chau, Mandschuria), Taiwan (Pei Sze Wu Shan, Ta-Ping Shan, Zeh Tan), Korea (Haeju, near Sijung Lake, Tesongsan Ryongaksan, Myohyang Mt., Myohyang-San, Nampo, Kjoeng-kwido, Sokkri Mt., Yeongchi-gul Cave, Seonggul Cave), Quelpart Island (Samyang-ri).

Thereuonema turkestana Verhoeff, 1905

Locus typicus: Uzbekistan: Buchara.

Material examined: Afghanistan: ♂, Kabul, Tape Bibi Mahru, 1,900 m, 07.06.1986, P. Beron leg.; 2 ♂♂, ♀, Kabul, 1,800 m, 02-19.06.1986, P. Beron leg.

General distribution: Uzbekistan (Buchara, Tashkent, Chadschent, Samarkand), Kyrgyzstan (Tschamandy near Sonkul Lake), Afghanistan (Kabul), North India (Kargil).

Remarks. This species has already been reported from Kabul by Würml (1975a).

Thereuopoda longicornis (Fabricius, 1793)

Scolopendra longicornis Fabricius, 1793 Entom. Syst. II.: 390.

Material examined: China: Yunnan, ad. ♂, juv., Menzi County, Wulichong Sinkhole Cave (N 3), 04.01.1989, P. Beron leg.; 2 ad. ♂♂, 2 ad. ♀♀, subad. ♂, same county, Chi Be Yi Dong Cave, 12.01.1989, P. Beron leg.; ad. ♂, ad. ♀, same county, the cave near the footpath to the plateau, 05.01.1989, P. Beron leg.; ad. ♂, subad. ♀, Chinsui County, Yan Dong Cave, 12.01.1989, P. Beron leg. Nepal: ad. ♀, Langtang, 3,500-3,600 m, 17.09.1984, P. Beron, S.

General distribution: Japan (Synho Cave), China (Dji-tu, Yangtzekiang, Hzifan-Bergland, Menzi County, Chinshui County), Taiwan, Nepal (Langtang, Ghora Tabela, Kyangjin, Kagbeni, Marpha, Jomsom), Bhutan, India (Pongoor, Siju Cave, Charmadi, Vellore, Madras), Sri Lanka, Vietnam, Laos, Cambodia, Myanmar, Thailand, Malaysia, Singapore, Indonesia (Sumatra Is., Java Is., Nias Is., Lombok Is., Sumbawa Is.), Borneo Is., Philippines (Palawan Is., Banda Is.), Nicobar Islands, New Ireland, Mauritius, Australia (Queensland and Malanda).

Remarks. This species is widespread in East and South Asia, the islands of Oceania and possibly Australia and Mauritius. It is herewith reported for the first time from Nepal, although this finding may be expected, as the species has already been reported from the neighboring Bhutan and India. The Gompa samples are among the highest ever recorded for a scutigeromorph centipede.

Family PSELLIODIDAE Würlmi, 1978

PSELLIOIDES guilclingii (Newport, 1845)

Ceramata guilclingii Newport, 1845 Trans. Linn. Soc. Lond., 19: 356.

Locus typicus: St. Vincent Island.

General distribution: USA (California), Mexico (Cueva de los Sabinos, San Luis Potosi), El Salvador, Nicaragua, Panama, Cuba, Haiti, Bahamas, Bimini Is., St. Vincent Is., Trinidad Is., Venezuela (Caracas, Rancho Grande), Guyana, Colombia, Peru, Bolivia (Coroico, Chulumani, La Paz), Brazil, Paraguay.
Remarks. Genus *Pselliodes* involves two neotropical species: *P. guildingii* (Newport, 1845) and *P. chagualensis* Kraus, 1957. While the former is quite widespread in the entire Neotropics, reaching California on the north, the latter is only known from its type locality - Chagual, Rio Marañón in Peru. Six other members of *Pselliodes* have been reported from Africa, thus proving the Trans-Atlantic distribution of the family and the genus. However, at present the systematical position of the African congeners is insufficiently known and needs re-evaluation.

Acknowledgements

I thank all collectors and especially Dr Petar Beron for allowing me to study their material. I am obliged to Dr Jean-Jacques Geoffroy for providing me with some of the Büchel's and Silvestri's papers on Scutigeromorpha.

References

Received on 25.08.2002
Скумпцерпуме (Chilopoda: Scutigeromorpha)
в колекцията на Националния природонаучен музей

Павел СТОЕВ

(Резюме)

Съобщавам се седем вида скумпцероморфни многоножки от колекцията на Националния природонаучен музей в София. Материалите са събрани предимно от г-р Петър Верон в Албания, Афганистан, Боливия, Виетнам, Гърция, Индонезия, Китай, Куба, Непал, Пакистан, Румъния, Тайланд и Турция. Два екземпляра от Psellodes guildeadii (Newport), уловени в пещери в Бразилия, принадлежат на Музея в Сао Пауло. Освен многото хорологични данни, два вида - Thereuonema syriaca Verhoeff и Thereuopoda longicornis (Fabricius), са нови, съответно за фауната на Пакистан и Непал.
Българско херпетологично дружество - първата неправителствена организация за защита на българската херпетофауна

Павел СТОЕВ

Отдавна възниква в зоологичните среди идеята за създаване на неправителствена организация с нестопанска цел, която да се занимава с проблемите на опазването на българската херпетофауна. За съжаление и тази идея трябва да избяга пътя от приятелските разговори в коридорите на Природонаучния музей и Института по зоология до деня, в който Софийският графски съд издаде решение за регистрация на Българско херпетологично дружество (Bulgarian Herpetological Society). Всъщност всичко започва няколко месеца по-рано, когато няколко завалени изследователи на земноводните и влечугите се събираха в кабинета на В. Бисерков в Централната лаборатория по обща екология и взехме решение да поставим основите на една обществена организация, чрез която да търсим подкрепа за защитата и изследването им. На тази среща, която възприемахме като учредителна, участваха ст.н.с. г-р Вълко Бисерков (ЦАОЕ), н.с. г-р Добри Добрев (ИЗ), г-р Красимир Христов, Павел Стоев (НПМ) и Деян Духалов. След дискусии върху устава на съружението и неговата бъдеща дейност се обсъждах кандидатурите на хората с присъна към изследването на българската херпетофауна, които ще бъдат поканени за членове. Всички се обединихме около становището, че несъвместимо с най-големи заслуги е ст.н.с. г-р Владимир Вешков и че трябва да бъде учредено полезно членство за него. За председател на БХД бе избран Вълко Бисерков, а за емблема (пичето) на организацията - стилизирана змия от Календара на прабългарите. Сегалице на организацията е Централната лаборатория по обща екология.

Целта на БХД е да участва активно в изследването и опазването на родната херпетофауна, да съхранява информация за всички видове български земноводни и влечуги, както и да обмени такива с чужестранни организации с подобна цел. Особено внимание ще бъде обърнато на регионите с ендемични видове, каквто са например Triturus vulgaris graecus, Salamandra salamandra beschkovi, Mauremys caspica rivulata, Elaphe situla, E. quatuorlineata, Coluber rubriceps и др. Дейностите със съружението ще изпълнява основно чрез проекти, адресирани към българските и международни организации, но въвеждени се предвиждат и със съвършен на други източници на финансиране, както и прибиване на по-широко публична подкрепа. Организацията започва своя път успешно и надеждно, за което сърдечно желаем от страна на студенти по биология и любители-херпетолози за членството в нея, а също така и по поканата от страна на проекта "Natura 2000", изпълняван от Министерството на околната среда и водите, за участие в бъдещите им дейности.

Нека да пожелаем на организацията и нейните членове дълъг живот, успешно сътрудничество с други НПО и много професионални успехи.
Cymindis (Paracymindis) beroni
B. Guéorguiev, 2000 - a new synonym
of Cymindis (Paracymindis) mannerheimi
Gebler, 1843 (Coleoptera: Carabidae)

Borislav GUÉORGUEV

Key words: Coleoptera, Carabidae, Cymindis (Paracymindis), new synonym, China.

In a previous paper the author described two new species of the genus Cymindis Latreille (GUÉORGUEV, 2000). The determinations of the diagnostic characters in both species are based almost entirely on the too schematic illustrations of EMETZ (1972). One of the new species, C. beroni, is postulated to be closest to C. mannerheimi - the most variable externally and widest distributed species of the subgenus Paracymindis Jedlička. However, according to I. Kabak (personal communication), who is at present actively working on the Central Asian species of the genus, the median lobe of beroni does not differ from that of mannerheimi. Based on two illustrations of the median lobes of the latter species from the Dzungarsky Alatau and Pamir, sent by I. Kabak, as well as on re-examination of the holotype of beroni, the author hereby became convinced that they are not specifically distinct from each other: Cymindis (Paracymindis) beroni B. Guéorguiev, 2000, Hist. nat. bulg., 11: 76 syn. n. of Cymindis (Paracymindis) mannerheimi Gebler, 1843, Bull. phys. Acad. St.-Pétersbourg, 1: 36.

The author expresses his appreciation to Dr. Ilya Kabak (St. Petersburg, Russia) for the kindly committed information about Cymindis mannerheimi.
References

Received on 18.10.2002

Author's address:
Borislav Guéorguiev
National Museum of Natural History
Tsar Osvoboditel Blvd. 1
1000 Sofia, Bulgaria
E-mail: bobivg@yahoo.com

Cymindis (Paracymindis) beroni B. Guéorguiev, 2000 - нов синоним на Cymindis (Paracymindis) mannerheimi Gebler, 1843 (Coleoptera: Carabidae)

Борислав ГЕОРГИЕВ

(Резюме)

Въз основа на информация, предоставена от И. Кабак (Санкт Петербург, Русия), Cymindis (Paracymindis) beroni B. Guéorguiev, 2000 е обявен за младши синоним (суп. нов.) на Cymindis (Paracymindis) mannerheimi Gebler, 1843.
Check list of Bulgarian carrion beetles
(Coleoptera: Silphidae)

Borislav GUÉORGUIEV & Jan RŮŽIČKA

Abstract. A bibliographical review of Bulgarian carrion beetles has been made. Besides, more than 370 new finds from over 200 localities have been added to 21 species. Five of them, being rare species or species long ago cited (Aclypea opaca (Linnaeus, 1758), Necrodes littoralis (Linnaeus, 1758), Silpha olivieri Bedel, 1887, Nicrophorus antennatus (Reitter, 1884) and Nicrophorus sepulchralis Heer, 1841), are confirmed for the country. Two species, the West-Mediterranean Silpha punc ticollis Lucas, 1846 and the East-Mediterranean Ablattaria arenaria (Kraatz, 1876), are excluded from the list. The latter one is indicated (in the literature) as occurring in the East Balkans without exact locality. Except for it, Silpha tristis Illiger, 1798 and Thanatophilus dispar (Herbst, 1793), known from single records, need further confirmation. As a result, 23 carrion beetles have been reliably established in Bulgaria. The chorotypes of all species and subspecies are given.

Key words: Coleoptera, Silphidae, check list, Bulgaria, Palaearctic region.

Introduction

Carrion beetles is a small group with approximately 200, mostly necrophagous, species worldwide (NEWTON, 1991). The first faunistic announcements on carrion beetles in Bulgaria date back to the end of 19th and beginning of 20th century - BASSANOVIČ (1891), HRISTOVIČ (1892), IOAKIMOVIČ (1899; 1904), MARKOVIČ (1904; 1909), KOVAČEVIČ (1905), NEDELKOVIČ (1905; 1909), ANONYMOUS (1907), and NETOLITZKY (1912). Later, new information was given in the works of MÜLLER (1929), ROUBAL (1931; 1934), DRENOWSKI (1932), PAPAZOVIČ (1934a), PANIN (1941), and CSIKI (1943). In the second half of the century new data was added by ANGELOVIČ (1960; 1964; 1965; 1968; 1986), SCHAWALLER (1979; 1980; 1981; 1996), GUÉORGUIEV (1990). GUÉORGUIEV et al. (1993) confirmed data by previous authors, listing only five rare species. Giving data on some beetles - intermediate hosts of helminthes, GENOV & BÝLÝ (1980) noted several carrion beetles with concrete topographic
data. Later, KODZHASHEV & PENEV (1998) repeated their data. Finally, GUOEORGIEV (2001) mentioned three species, new for the Kresna Gorge. As a result, the faunistic information in the various contributions (mostly in Bulgarian) is sufficient, as most of it, excluding the present contribution, could be found in PAPAZOV (1934a). A short note, made by the same author (PAPAZOV, 1934b), recorded some species most of which had been incorrectly published in previous Bulgarian papers. The same note does not contain faunistic data, so that interesting announcements about several rare species like Thanatophilus dispar and Nicrophorus sepulchralis seem lost. As a whole, the determination of the species is comparatively easy and for the Bulgarian amateurs the key of Papazov seems reliable (PAPAZOV, 1934a). Records on three carrion beetles, wood and agricultural pests, are listed in BURESCH & LAZAROV (1956), as concrete localities for them are cited in the following papers (MALKOV, 1904; 1907; TSCHORBADJIEV, 1924; 1932; DRENSKY, 1930; 1931; ANONYMOUS, 1945).

The present paper has as its objectives: (i) to add new revised material, not released until now; (ii) to systematize all literature sources published till now; and (iii) to show the present state of knowledge and the problems concerning the group in Bulgaria.

Material and methods

Most of the new data was found out among the archive of Vassil Guoeorgiev. The material has been accumulated in the collection of the National Museum of Natural History - Sofia (NMNHS) during the entire 20 century and was determined by him. This material is cited further in the text without mention of its deposition. Except in arranging of these new data, the contribution of the senior author hereby includes also a revision of some specimens of the genera Aclypea, Dendroxena, Nicrophorus, Silpha, and Thanatophilus.

Various Czech entomologists, visiting Bulgaria in 1963-2001, collected further material, determined or reviewed by the junior author. This material is deposited in several private and public collections; the following acronyms for their indication are used together with the material cited below: AH - private collection of A. Holub, Ceske Budovice; AO - private collection of A. Olexa, Praha; JC - private collection of J. Cech, Ceske Budovice; JHA - private collection of J. Nava, Praha; JHO - private collection of J. Horak, Praha; JJ - private collection of J. Jurcicek, Praha; JK - private collection of J. Kohout, Roudnice nad Labem; JM - private collection of J. Mashek, Zlutice; JP - private collection of J. Prouza, Hradec Kralov; JRE - private collection of J. Rejsek, Podbrady; JRU - private collection of J. Ruzicka, Praha; JSC - private collection of J. Schneider, Praha; JST - private collection of J. Stanovsk, Ostrava; KO - private collection of K. Orszulik, Frydek-Mistek; NMB - Naturhistorisches Museum, Basel (M. Brancucci); MMB - Moravsk museum, Brno (P. Lauterer, J. Kolibac); MCL - Okresni museum, Ceska Lipa (M. Honcu); MH - private collection of M. Havlas, Opava; MK - private

Both authors made the occasional comments on most of the species. Genera and species within the subfamilies Silphinae and Nicrophorinae are sorted alphabetically. Material of each species within geographical units is sorted chronologically. Only the junior synonyms of species names are given throughout the mentioned references. The subfamily Agyrtinae, included within Silphidae in the past, is now a separate family in the modern classification of beetles (NEWTON & THAYER, 1992).

Systematic part

SILPHINAE

Ablattaria Reitter, 1885

(*Ablattaria arenaria* (Kraatz, 1876): SCHAWALLER (1979: 7 & Abb. 1). The occurrence of this East-Mediterranean species in Bulgaria is questionable. The map in the above mentioned paper cannot to be a reliable evidence for its presence in the country. Although *A. arenaria* probably occurs in the country, without exact faunistic data for the time being, the species has better not be included in the list of Bulgarian carrion beetles.)

Ablattaria laevigata (Fabricius, 1775)

(? = *laevigata gibba* Brullé, 1832; ? *laevigata meridionalis* Gánglbauer, 1899)

NEW DATA: Danube Plain: Razgrad, V.1905, A. Markovich leg. (1 ex. sub *Silpha reticulata* F.); Cherven, VI.1989, S. Bečvár leg. (5 ex., JRU); Novi Pazar, 20.VII.1989, M. Kuboň leg. (1 ex., MK). **Predbalkan:** Smirnenski Dam near Montana, 20.VII.1980 (1 ex.). **Vitosha Mtn.:** Kladnitsa, 31.V.1981, D.
Bocharov leg. (1 ex.). *Zemenska planina Mtn.:* 10 km W Zemen, 21.-
23.VI.1983, F. Hieke leg. (1 ex., ZMHB). *Ograzhden Mtn.:* dam near Sestrino,
6.IV.1983, J. Ganev leg. (1 ex.). *Middle Struma Valley: Melnik, 27.VI.1982,
M. Snížek leg. (1 ex., MS); Chotovo, 27.IV.1988, R. Červenka leg. (2 ex., JSC).

Slavyanka Mtn.: Petrovo, 23.VII.1930, P. Drenski leg. (2 ex.); below Tsarev
Vrah Peak, 1200 m, 29.VI.1937, P. Drenski leg. (3 ex.); 14.VI.1938, 1490 m, I.
(1 ex., ZMA). *Strandzha Mtn.:* Zvezdec env., 700 m, no date, I. Smatana leg.
(3 ex., JRU). *Black Sea Coast: Varna, no date, Laco leg. (3 ex., SNM);
Zvezditsa, 2.V.1949, N. Karnozhitsky leg. (3 ex.); Beboslav (= former
Gebedzhe), 15.V.1952, N. Karnozhitsky leg. (1 ex.); Sea Garden in Varna,
26.IV.1954, N. Karnozhitsky leg. (2 ex.); place "Gyunduz" near Varna, 2.V.1954,
N. Karnozhitsky leg. (3 ex.); Sluntchev Bryag, 7.VIII.1964, K. Pospíšil leg.
(1 ex., MMB); same locality, 9.VI.1964, K. Pospíšil leg. (1 ex., MMB); same
locality, 25.VIII.1976, L. Pospíšilová leg. (1 ex., MMB); Sozopol, VIII.1965, J.
Král leg. (2 ex., JRU); same locality, 15.VII.1969, V. Karas leg. (1 ex., VK);
same locality, VI.1971, A. Olexa leg. (1 ex., AO); same locality, 1971, J. Král leg.
(1 ex., JRU); same locality, 4.VII.1977, V. Karas leg. (1 ex., VK); same locality,
6.VII.1977, V. Karas leg. (1 ex., VK); same locality, 7.VIII.1979, D. Bocharov
leg. (1 ex.); same locality, 9.VII.1980, L. Menci leg. (1 ex., JRU); same locality,
20.VII.1981, M. Kuboň leg. (1 ex., MK); same locality, 12.VI.1984, R. Říha leg.
(1 ex., MCL); same locality, 6.V.1985, M. Kuboň leg. (1 ex., MK); same locality,
19.IX.1987, no collector’s name (1 ex., TL); Albena, 11.VII.1967, Lát leg. (1 ex.,
MCL); same locality, VIII.1976, Seký leg. (1 ex., VK); same locality, 2.VI.1990,
J. Batelka leg. (1 ex., RN); Arkutino, VII.1970, A. Olexa leg. (1 ex., AO); same
locality, 18.VI.1985, M. Vrba leg. (1 ex., VM); Burgas, 23.VI.1975, Z. Kačenka
leg. (1 ex., ZK); Burgas env., seacoast, 18.VII.1981, B. Jaeger leg. (1 ex.,
ZMHB); Primorsko, 20.IX.1975, P. Pecina leg. (1 ex., JRU); same locality,
20.IX.1975, P. Pecina leg. (1 ex., JRU); same locality, VII.1976, J. Jurčiček leg.
(1 ex., JJ); same locality, 20.VI.1988, M. Janata leg. (1 ex., JRU); same locality,
2.VII.1989, M. Trýzna leg. (2 ex., MT); Kiten, 11.VII.1977, V. Karas leg. (1 ex.,
VK); same locality, 6.VII.1986, J. Mička leg. (1 ex., JRU); Lozenets, 11.VII.1978,
S. Laibner leg. (1 ex., SL); same locality, 27.VI.1982, M. Snížek leg. (1 ex., MS);
same locality, 10.VII.1982, M. Snížek leg. (1 ex., MS); same locality, 7.VII.1986,
V. Karas leg. (1 ex., VK); same locality, 29.VI.1987, M. Šárovec leg. (1 ex., JRU);
Lozenec env., VII.1971, J. Bohač leg. (1 ex., JRU); same locality, 1.VII.1983, R.
Čermák leg. (3 ex., ZZ); Michurin, 20.VII.1978, M. Konrád leg. (1 ex., JRU);
same locality, 23.VI.1982, S. Bilý leg. (1 ex., JRU); Vlas, VII.1982, Hubálek leg.
(1 ex., JP); Kosharica, VI.1984, Z. Černý leg. (1 ex., ZC); Chernomorets,
(1 ex., MS); Bjala, VII.1984, Wachtl leg. (1 ex., MT); same locality, 15.VI.1986,
A. Holub leg. (1 ex., AH); same locality, VII.1986, V. Novák leg. (1 ex., MT);
Kamen Bryag, 11.VII.1984, J. Růžička leg. (1 ex., JRU); Kranovo, 10.VII.1987,
Gebauerová leg. (1 ex., ZMA); Nesebar, VI.1988, Z. Černý leg. (2 ex., ZC);

Collections are in IV-IX. Variable, polymorphic species (SCHAWALLER, 1979),
taxonomic status of *A. laevigata gibba* (Brullé, 1832) and *A. laevigata*
meridionalis Ganglbauer, 1899 is not clear and needs further study (J. Růžička, unpubl.). Larger, more vaulted specimens, attributed to these subspecies are known from South-East Europe, Crimea, Crete, Cyprus to Asia Minor (PORTEVIN, 1926; SCHAWALLER, 1979, Abb. 1).

Aclypea Reitter, 1884 (= Blitophaga Reitter, 1884)

Aclypea opaca (Linnaeus, 1758)

NEW DATA: Black Sea Coast: Varna, VIII.1979, K. Deneš leg. (1 ex., MS).

Collection only in VIII. Holarctic species (PORTEVIN, 1926; SCHAWALLER, 1996). *A. opaca* was cited by MAŁKOV (1907) as a beetroot pest from Sadovo, and by other authors as a maize pest without exact localities. According to SCHAWALLER (1996, Abb. 25) it lives in the North Balkans. Undoubtedly, it is a rare Bulgarian species (GUÈORGUEV et al., 1993), a single new record confirms its occurrence in Bulgaria (Fig. 1).

Aclypea undata (O. F. Müller, 1776)

(= **reticulata** Fabricius, 1787; **verrucosa** Ménétriés, 1832; **nitidior** PORTEVIN, 1926)

Silpha reticulata: IOAKIMOV (1904: 13); MARKOVICH (1904: 237); KOVACHEV (1905: 6); NEDELKOV (1905: 437); ANONYMOUS (1907: 296); MARKOVICH (1909: 7).

![Fig. 1. Localities of Aclypea opaca (Linnaeus) in Bulgaria](image-url)

Collections are in III-VIII. Known from Europe, Asia Minor, the Caucasus to Iran and West Siberia (Portevin, 1926; Schawaller, 1996).

Dendroxena Motschulsky, 1858 (= Xylocopa C. G. Thompson, 1859)

Dendroxena quadripunctata (Scopoli, 1772)

(= quadrripunctata Schreber, 1759, nec Linnaeus, 1758)

Silpha quadripunctata: Ioakimov (1904: 13); Kovachev (1905: 6); Markovich (1904: 237); Nedelkov (1905: 437); Anonymous (1907: 296); Markovich (1909: 6). Xylocopa quadripunctata: Papazov (1934a: 194); Angelov (1960: 24); Angelov (1964: 309); Angelov (1965: 133); Angelov (1986: 63).

Collections are in IV-VII. Europe, the Caucasus to West Siberia (PORTEVIN, 1926; NIKOLAEV & KOZMINYKH, 2002). The nomenclature problems concerning the use of the name _Silpha quadripunctata_ were reviewed by MADGE & POPE (1970).

Necrodes Leach, 1815

Necrodes litoralis (Linnaeus, 1758)

Necrodes litoralis: PAPA佐 (1934a: 191); GUÉORGUIEV et. al. (1993: 295).

Collections are in IV-IX. Transpalaeartic species distributed from Europe to Japan (PORTEVIN, 1926; NIKOLAEV & KOZMINYKH, 2002). _N. litoralis_ was cited as rare species for Bulgaria (GUÉORGUIEV et. al., 1993). However, the numerous new data mentioned here refute this opinion (Fig. 2). Its seeming rarity in collections can be explained particularly by the fact that _N. litoralis_ is attracted mostly to large carcasses and thus usually not collected by pitfall traps. The more considerable part of the new material was collected by means of light traps.

Oiceoptoma Leach, 1815

Oiceoptoma thoracicum (Linnaeus, 1758)

Fig. 2. Localities of *Necrodes littoralis* (Linnaeus) in Bulgaria

Collections are in III-IX. Transpalaeartic species, known from Europe to Japan (PORTEVIN, 1926; NIKOLAEV & KOZMINYKH, 2002).

Phosphuga Leach, 1817

Phosphuga atrata (Linnaeus, 1758)

(= *paedemontana* Fabricius, 1775; *fusca* Herbst, 1793; *brunnea* Herbst, 1793; *cassidea* Kraatz, 1876)

Peltis fuscus Herbst var. *brunnea* Herbst; IOAKIMOV (1904: 13). *Silpha atrata* var. *brunnea*: NEDELKO (1905: 437); *Silpha atrata* var. *cassidea*: NEDELKO (1905: 437); PAPAZOV (1934a: 198-199). **Phosphuga atrata**: NETOLITZKY, 1912: 159); PAPAZOV (1934a: 198); ANGELOV (1964: 309); ANGELOV (1986: 63). *Silpha atrata*: MALKOV (1904; 1907); TSCHORBADJIEV (1924; 1932); DRENSKI (1930: 38, 54); DRENSKI (1931: 22); ANONYMOUS (1945); BURESCH & LAZAROV (1956: 229). *Silpha atrata* ab. *brunnea*: PAPAZOV (1934a: 198).

NEW DATA: **Danube Plain:** Razgrad, V.1905, A. Markovich leg. (1 ex.). **West Stara planina Mts.:** Gintsi, 9.XII.1982 (5 ex.). **East Stara Planina Mts.:** Goren Chiflik, 16.XI.1944, N. Karozhitsky leg. (3 ex.). **Sofia Region:**

Collections are in III-XII. Transpalaeartecric species, known from Europe to Kuril Islands and Japan (Portevin, 1926; Nikolaev & Kozminykh, 2002). The brown form of the species is mentioned as a pest on rye and other cereals (Malkov, 1904; 1907; Tschorbadjiey, 1924; 1932; Drenski, 1930: 38), as well as on sugar beet (Drenski, 1931: 22; Anonymous, 1945).

Silpha Linnaeus, 1758 (= Peltis Geoffroy, 1762)

Silpha carinata Herbst, 1783

(= *austriaca* Otto, 1891; *bilineata* Reitter, 1901; *carpathica* Reitter, 1901; *croatia* Obenberger, 1917)

Silpha carinata: IOAKIMOv (1904: 13); PAPAZOV (1934a: 195); PAPAZOV (1934b: 221); GENOV & BILY (1980: 29); ANGELOV (1986: 63); KODZHABASHEV & Penev (1998: 78).

Collections are in IV-VIII. Known from Europe and the Caucasus to Central Asia and Central Siberia (Portevin, 1926; Nikolaev & Kozminykh, 2002).
Silpha obscura orientalis Brullé, 1832

(= lugens Küster, 1851; turcica Küster, 1851)

Silpha obscura Linnaeus: Hristovich (1892: 338); Ioakimov (1899: 766); Ioakimov (1904: 13); Markovich (1904: 237); Kovachev (1905: 6); Nedelkov (1905: 437); Malkov (1907); Markovich (1909: 7); Nedelkov (1909: 101); Netolitzky (1912: 159); Tschorbadjiiev (1924); Papazov (1934a: 195); Roubal (1934: 43); Buresch & Lazarov (1956: 229); Angelov (1960: 24); Angelov (1965: 133); Genov & Bily (1980: 29); Kozhdabashev & Penev (1998: 78). Silpha orientalis: Roubal (1931: 362); Papazov (1934a: 196); Papazov (1934b: 221); Panin (1941: 549); Csiki (1943: 215). Silpha orientalis var. turcica Küster: Papazov (1934a: 197); Papazov (1934b: 221). Silpha orientalis ab. lugens Küster: Papazov (1934a: 197); Papazov (1934b: 221). Silpha obscura orientalis: Schawaller (1980: 3); Guéorguiev (2001: 170).

Collections are in III-VIII. Known from South-East Europe, Crete, Cyprus, Asia Minor to North Syria (Porovin, 1926; Schawaller, 1980). Malkov (1907) and Tschorbadjieff (1924) recorded this species as a beetroot pest from Sadovo.
Silpha olivieri Bedel, 1887
(= granulata: Olivier, 1790, nec Fabricius, 1787)

Collections are in IV-VI. Mediterranean species (PORTEVIN, 1926); eastern border of its distribution range is lying in the southern part of the country. Several records from the Struma valley and a single record from the Maritsa valley confirm its presence in Bulgaria (Fig. 3).

{Silpha puncticollis Lucas, 1846: IOAKIMOV (1899: 766; 1904: 13). This species was cited as occurring in Bulgaria on the basis of misidentified material. S. puncticollis lives in the west Mediterranean: Spain, Balearic Islands, South France, Morocco, Algeria, and Tunisia (PORTEVIN, 1926). Concerning the range of the taxon, it has to be excluded from our fauna.}

Fig. 3. Localities of Silpha olivieri Bedel in Bulgaria
Silpha tristis Illiger, 1798
Known from Europe, Asia Minor, the Caucasus to Iran (PORTEVIN, 1926).
Being cited only once with exact locality for the country (Fig. 4), the species
seems to be not so common in the Bulgarian fauna.

Thanatophilus Leach, 1815 (= Pseutopelta Voet, 1793)

Thanatophilus dispar (Herbst, 1793)
Thanatophilus dispar: MÜLLER (1929: 8); PAPAZOV (1934b: 221);
Palaearctic species (PORTEVIN, 1926; SCHAWALLER, 1981). Only once
recorded with exact locality (MÜLLER, 1929; Fig. 4), the species needs cogent
confirmation for Bulgaria. SCHAWALLER (1981: 11) mentioned the occurrence
of T. dispar in the West Balkans.

Thanatophilus rugosus (Linnaeus, 1758)
Silpha rugosa: IOAKIMOV (1904: 13); NEDELKOV (1905: 437). Thanatophilus
rugosus: NETOLITZKY (1912: 159); MÜLLER (1929: 8); PAPAZOV (1934a: 191);
ROUBAL (1934: 43); ANGELOV (1964: 309); ANGELOV (1965: 132); SCHAWALLER

Fig. 4. Localities of Silpha tristis Illiger (crosspiece) and Thanatophilus dispar (Herbst)
(pentacle) in Bulgaria

Collections are in III-VIII, X. Transpalaeartic species (Portevin, 1926; Schawaller, 1981).

Thanatophilus sinuatus (Fabricius, 1775)

Pseudopelta sinuata: Iokimov (1904: 13). **Silpha sinuata**: Nedelkov (1905: 437); Markovich (1909: 6). **Thanatophilus sinuatus**: Netolitzky (1912: 159); Müller (1929: 8); Panin (1941: 549); Angelov (1964: 309); Schawaller (1981: 6); Angelov (1986: 62). **Thanatophilus sinuatus** (sic!); Papazov (1934a: 192); Angelov (1965: 133).

Collections are in III-VIII, X. Transpalaearctic species (PORTEVIN, 1926; SCHAWALLER, 1981).

NICROPHORINAE

Nicrophorus Fabricius, 1775

(= *Necrophorus*: Thunberg, 1789; *Neonicrophorus* Hatch, 1946)

Nicrophorus antennatus Reitter, 1884

Necrophorus antennatus: NEDELKO (1905: 436); ANONYMOUS (1907: 296); PAPAIZOV (1934a: 190); PANIN (1941: 549).

NEW DATA: Sofia Region: Sofia, 27.IV.1938, I. Buresch leg. (1 ex.).

Collections are in VI-VII. Widely distributed through Central and East Europe, Asia Minor, the Caucasus to Central Asia (SIKES et al., 2002). This species seems to be rare in Bulgaria (Fig. 5).

Nicrophorus germanicus (Linnaeus, 1758)

Necrophorus germanicus: IOAKIMO (1904: 12); KOVAČEVI (1905: 6); MARKOVICH (1909: 6); PAPAIZOV (1934a: 188); PAPAIZOV (1934b: 221). *Necrophorus germanicus* (sic!): NEDELKO (1905: 437).

NEW DATA: Danube Plain: Svishtov, 20.VI.1900, D. Ioakimov leg. (1 ex.); Grivitsa, VII.1979, V. Popov leg. (2 ex.). **Belasitsa planina Mtn.:** no date,
Mařan et Táborský leg. (1 ex., RR). **Black Sea Coast:** Kamen Bryag, 10.VII.1984, J. Růžička leg. (1 ex., JRU).

Collections are in IV-VII. Known from Europe, the Caucasus, Turkey, Syria to Iran (Sikes et al., 2002).

Nicrophorus humator Gleditsch, 1767

Nicrophorus humator. IOAKIMOV (1904: 12); MARKOVICH (1904: 237); NEDELKOV (1905: 437); MARKOVICH (1909: 6); PAPAZOV (1934a: 188-189); ROUBAL (1934: 43). *Nicrophorus humator.* ANGELOV (1986: 62).

NEW DATA: East Stara planina Mts.: Kotel, 29.IX.1924, I. Buresch leg. (1 ex.). **Sofia Region:** Sofia, 20.IV.1949, D. Bocharov leg. **Vitosha Mtn.:** above Bistritsa, 1000-1400 m, 15.IX.1982; same locality, 17.X.1982, both L. Penev leg. **Osogovo Mtn.:** place "Dve reki", 1000 m, 8.IV.1977. **Middle Struma Valley:** Kozhuh, 28.III.1982; same locality, 10.V.1982; same locality, 14.I.1982, all J. Ganev leg. **Black Sea Coast:** Varna, 20.IV.1947 (4 ex.); same locality, 17.III.1957, both N. Karnozhitsky leg. (1 ex.).

Collections are in III-VII; IX-X. Known from Europe, North Africa, Near East, the Caucasus, Iran to Central Asia (Sikes et al., 2002).

Nicrophorus interruptus Stephens, 1830

(= *fossor* Erichson, 1837; *trimaculatus* Gradl, 1882)

Collections are in VI-IX. Known from Europe, North Africa, Asia Minor, the Caucasus, Iran to Kazakhstan (SIKES et al., 2002). Some subsequent authors incorrectly treated the variation *trimaculata* Gradl, 1882 as an aberration of *N. vestigator* (see references above). For comments upon the priority of *N. interruptus* over *N. fossor* see SIKES et al. (2002).

Nicrophorus investigator Zetterstedt, 1824

(= *ruspator* Erichson, 1837)

Necrophorus ruspator: IOAKIMOV (1904: 13); *Necrophorus investigator*: NEDELKO (1905: 437).

NEW DATA: Middle Struma Valley: Kozhuh, 10.V.1983, J. Ganev leg.
Collections are in V; VII-VIII. Holarctic species (SIKES et al., 2002), not very common in Bulgaria (Fig. 6).

Nicrophorus sepulchralis Heer, 1841

Necrophorus nigricornis: PAPAHOV (1934a: 189); PAPAHOV (1934b: 221); ANGELOV (1965: 132); GUERGUIEV et. al. (1993: 295); *Nicrophorus nigricornis*: ANGELOV (1986: 61).

Fig. 6. Localities of *Nicrophorus investigator* Zetterstedt in Bulgaria

105
Collections are in VI-VIII. *Nicrophorus sepulchralis* is a typical mountain species known from the Alps and the Balkans. Sikes et al. (2002) recently removed it from synonymy under *N. nigricornis* Faldermann, 1835, known from the eastern part of Asia Minor, the Caucasus and Iran. *N. sepulchralis* appears to be rare in Bulgaria (Fig. 7), so far known to exist with certainty only in the West Rhodopes. The papers of Angelov (1986) confirmed previous data (Angelov, 1965), and the note of Papazov (1934b) is deprived of faunal data.

Nicrophorus vespillo (Linnaeus, 1758)

Nicrophorus vespillo: Bassanovich (1891: 19); Markovich (1904: 237); Kovachev (1905: 6); Anonymous (1907: 296); Markovich (1909: 6); Papazov (1934a: 190); Genov & Bily (1980: 29); Kodzhahashev & Penev (1998: 78). *Nicrophorus vespillo* (sic!): IaKIMov (1904: 12).

Collections are in III-VI; VIII-IX. Known from Europe, Asia Minor, the Caucasus to central Asia (Sikes et al., 2002).

Nicrophorus vespilloides Herbst, 1784

(= mortuorum Fabricius, 1792)

![Fig. 7. Localities of Nicrophorus sepulchralis Heer in Bulgaria](image-url)
Necrophorus mortuorum: IOAKIMOV (1899: 766); NEDELKOV (1905: 437).
Necrophorus vespilloides: PAPAZOV (1934a: 189); PAPAZOV (1934b: 221);

Ganev leg. (2 ex.). Central Stara planina Mts.: Shipka Pass, 5.VII.2000, M.
Snižek leg. (1 ex., MS). Vitosha Mt.: above Bistritsa, 1400-1700 m,
25.VIII.1982 (8 ex.); Bistritsa, 15.IX.1982, both L. Penev leg. Rila Mt.: place
"Sarugioi", 1500 m, (1 ex.); Rilski manastir, 11.VIII.1955, both N. Karnozhtsky
leg. (1 ex.); VII.1967, no collector's name (1 ex., MMB, coll. Grulich). Middle
Struma Valley: Kozhuh, 10.VI.1981, J. Ganev leg. West Rhodopes Mts.: Dedovo,
18.VII.1981, D. Bocharov leg. (7 ex.). Black Sea Coast: Maslen Nos
Cap, 16.VII.1933, K. Tuleshkov leg. (1 ex.).

Collections are in V-IX. Holarctic species (SIKES et al., 2002).

Necrophorus vestigator Herschel, 1807
(= interruptus Brulé, 1832, nec Erichson, 1837)
Necrophorus vestigator: IOAKIMOV (1904: 12); KOVACHEV (1905: 6); NEDELKOV
(1905: 437); MARKOVICH (1909: 6); NEDELKOV (1909: 101); PAPAZOV (1934: 190);
ROUBAL (1934: 43); ANGELOV (1960: 24); ANGELOV (1964: 309).

NEW DATA: Danube Plain: Razgrad, V.1905, A. Markovich leg. (2 ex.).
East Stara Planina Mts.: Sliven, 18.VIII.1908, Rambousek leg. (1 ex., RR);
Komunari, 6.VIII.1984, J. Rúžička leg. (1 ex., JRU). Sofia Region: Novi Iskar
(= former Kurilo), 6.IV.1947, D. Bocharov leg. Middle Struma Valley:
Kozhuh, 10.VI.1981; same locality, 10.V.1983, both J. Ganev leg. East
Rhodopes Mts.: Leshnikovo, 14.VI.1975 (1 ex., ZZ); Biser, 16.VI.1975, both Z.
Znamenáček leg. (1 ex., ZZ); Harmanli, 25.-29.VI.1975, D. Král leg. (1 ex., JRU).
Thracean Lowland: Botevo near Yambol, 23.VI.1979, V. Popov leg. (1 ex.).
Black Sea Coast: Varna, 18.VII.1942 (3 ex. on Talpa europaea and hamster);
same locality, 26.V.1946, both N. Karnozhitsky leg. (4 ex. on Erinaceus
europaeus); Arkitino, 18.-25.VI.1985, Capouch leg. (1 ex., AH); Nesebar env.,

Collections are in III-VII. Known from Europe, Asia Minor, Near East to
West Siberia and Kashmir (SIKES et al., 2002).

Contemporary state and problems of the silphid-fauna in Bulgaria

A bibliographical review of carrion beetles in Bulgaria has been made. Besides,
more than 370 new finds from over 200 localities have been added for
21 taxa. As a result, 23 spp. (from ca. 25-26 known in Southeast and Central
Europe) have been established. Five of them, being rare species (GUÉORGUEV
et al., 1993) or species long ago recorded, e.g. Aclypea opaca (Linnaeus, 1758),
Necrodes littoralis (Linnaeus, 1758), Silpha olivieri Bedel, 1887, Necrophorus
antennatus (Reitter, 1884) and N. sepulchralis Heer, 1841, have been
confirmed for Bulgaria. The West Mediterranean Silpha puncticolis Lucas,
1846, cited by IOAKIMOV (1899; 1904), is excluded from the list of Bulgarian
beetles. Several problems could be of interest to both the carrion beetle specialists and the Bulgarian coleopterologists. The species Ablattaria arenaria (Kraatz, 1876), indicated for the East Balkans (Schawaller, 1979: 9, Abb. 1) but not properly cited for Bulgaria and not included in the present list, requires reliable evidence. Other two species, Silpha tristis Illiger, 1798 and Thanatophilus dispar (Herbst, 1793), are both known from single localities and need further confirmation.

Chorotypes of Bulgarian Silphidae

Regarding their present distribution, the Bulgarian species could be placed under various kinds of chorotypes (Table 1).

Table 1.
Chorotypes of the Bulgarian species and subspecies of Silphidae

<table>
<thead>
<tr>
<th>SPECIES AND SUBSPECIES</th>
<th>CHOROTYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablattaria laevigata (Fabricius, 1775)</td>
<td>European - West Turanian</td>
</tr>
<tr>
<td>Actypea opaca (Linnaeus, 1758)</td>
<td>Holarctic</td>
</tr>
<tr>
<td>Aclypea undata (O. F. Müller, 1776)</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Dendroxyena quadrimaculata (Scopoli, 1772)</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Necrodes litoralis (Linnaeus, 1758)</td>
<td>Transpalaearctic</td>
</tr>
<tr>
<td>Nicrophorus antennatus Reitter, 1884</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Nicrophorus germanicus (Linnaeus, 1758)</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Nicrophorus humator Gleditsch, 1767</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Nicrophorus interruptus Stephens, 1830</td>
<td>Transpalaearctic</td>
</tr>
<tr>
<td>Nicrophorus investigator Zetterstedt, 1824</td>
<td>Holarctic</td>
</tr>
<tr>
<td>Nicrophorus sepulchralis Heer, 1841</td>
<td>European Mountain</td>
</tr>
<tr>
<td>Nicrophorus vespillo (Linnaeus, 1758)</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Nicrophorus vespilloides Herbst, 1784</td>
<td>Holarctic</td>
</tr>
<tr>
<td>Nicrophorus vestigador Herschel, 1807</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Oiceoptoma thoracicum (Linnaeus, 1758)</td>
<td>Transpalaearctic</td>
</tr>
<tr>
<td>Phosphuga atrata (Linnaeus, 1758)</td>
<td>Transpalaearctic</td>
</tr>
<tr>
<td>Silpha carinata Herbst, 1783</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Silpha obscura orientalis Brullé, 1832</td>
<td>South-east European - West Turanian</td>
</tr>
<tr>
<td>Silpha olivieri Bedel, 1887</td>
<td>Mediterranean</td>
</tr>
<tr>
<td>Silpha tristis Illiger, 1798</td>
<td>West Palaearctic</td>
</tr>
<tr>
<td>Thanatophilus dispar (Herbst, 1793)</td>
<td>Transpalaearctic</td>
</tr>
<tr>
<td>Thanatophilus rugosus (Linnaeus, 1758)</td>
<td>Transpalaearctic</td>
</tr>
<tr>
<td>Thanatophilus sinuatus (Fabricius, 1775)</td>
<td>Transpalaearctic</td>
</tr>
</tbody>
</table>

The various chorotypes could be united in 5 main complexes: I. Holarctic (Holarctic chorotype) - 3 spp.; II. Palaearctic (Transpalaearctic chorotype) - 7 spp.; III. West-central Palaearctic (West Palaearctic, European - West Turanian chorotypes) - 11 spp.; IV. European (European-Mountain chorotype) - 1 sp.; V. Mediterranean (Mediterranean chorotype) - 1 sp.
Out of the total number of 23 species of Silphidae known from the region investigated, the most numerous are the taxa with Transpalaeartic and West Palaeartic ranges - more than two-thirds of species. Interestingly, the carrion beetles from both the European and the Mediterranean complexes are scanty, both with only a single species. The predominance of the wide distributed Palaeartic taxa in Bulgaria hints at the relatively recent geological expansion of group. This could be in support of the Newton's opinion. According to it (NEWTON, 1997: 146-147) the species from Silphidae are relatively younger in terms of phylogenesis than other "carrion beetles" known (Agyrtidae, some Leiodidae).

Acknowledgements

We are grateful to Dr A. Popov (NMNHS) and all Czech colleagues for their work with the collections and to Dr S. Abadjiev (Institute of Zoology, Sofia), Mr. B. Petrov (NMNHS) and Mr. P. Petrov (Institute of Plant Physiology, Sofia) for their help with the maps.

References

Authors’ addresses:

Dr Borislav Gučorguiev
National Museum of Natural History
Tsar Osoboditel Blvd. 1
1000 Sofia, Bulgaria
E-mail: bobivg@yahoo.com

Dr Jan Růžička
Department of Ecology, Faculty of Forestry
Czech Agricultural University
CZ-165 21 Praha 6, Czech Republic
E-mail: ruzicka@lf.czu.cz

Received on 23.09.2002
Ревизиран списък на българските бръмбари-мършояди (Coleoptera: Silphidae)

Борислав ГЕОРГИЕВ, Ян РУЖИЧКА

(Резюме)

Настоящата работа се основава както на непубликувани данни, така и на преглед на познатата литература. Установени са 23 вида и подвида от различни региони на България. За 21 от тях са представени над 370 нови находки от повече от 200 локалитета. Actyopea opaca (Linnaeus, 1758), Necrodes littoralis (Linnaeus, 1758), Silpha olivieri Bedel, 1887, Necrophorus antennatus (Reitter, 1884) и N. sepulchralis Heer, 1841, познати досега само от единични находки, са потвърдени за българската фауна. Silpha tristis Illiger, 1798 и Thanatophilus dispar (Herbst, 1793), познати от по-стари данни, се нуждаят от по-нататъшно изследване. Западномедитеранският вид Silpha puncticollis Lucas, 1846 е изключен от списъка на българската фауна. Същото се отнася и за Ablattaria arenaria (Kraatz, 1876), указан без конкретни находища за източните райони на Балканския полуостров. Определени са зоогеографските категории на всички видове и подвидове.
Neue Angaben über Marienkäfer (Coleoptera: Coccinellidae) aus Republik Mazedonien, Albanien, Griechenland und Türkei, mit eine Revisionsliste der Arten der Balkanhalbinsel

Vassila JORDANOVA

Abstract. New data are reported for 28 species and subspecies ladybirds collected in the Republic of Macedonia, Albania, Greece (Crete) and Turkey. Five species are new to the fauna of Macedonia, and 6 to the fauna of Greece. A revision of the distribution of family Coccinellidae on the Balkan Peninsula is made.

Key words: Coleoptera, Coccinellidae, Balkan peninsula, check list, distribution

Der vorliegende Artikel beinhaltet die Ergebnisse einer Untersuchung von coccinellidem Material, das in der Republik Mazedonien, Albanien, auf der Kretainsel (Griechenland) und in der Tuerkei von den Kollegen Dr. P. Beron, Dr. Kr. Kumanski, Dr. I. Kolarov, Dr. I. Sakalian, Dr. B. Guéorguiev, Dr. M. Langourov, Dr. D. Petrov, Dr. St. Petrov, sowie von Studenten (Sch. P., P. D., M. P.) der Universitaet in Skopie gesammelt wurde. Es wurden 156 Exemplare - Vertreter der Fam. Coccinellidae - verarbeitet, davon insgesamt 29 Arten, bzw. Unterarten und 2 Vertreter bis zu ihrem Gattungsstatus.

Neu für die Balkanhalbinsel (in die Tabelle mit ** bezeichnet) sind folgende Arten: Scymnus (Mimopullus) fulvicolis; Sc. (Pullus) ferrugatus; Sc. (s. str.) femoralis. Die Gattung Stethorus Weise,1885 ist neu für Grichenland.

EPILACHNINAE

EPILACHNINI

Subcoccinella quatuordecimpunctata (Linnaeus, 1758)

V e r b r e i t u n g: Europa, Kaukasus, Kleinasien, Mittelasien, der Ferne Osten von Russia, Nordafrika, introduziert in der Osten der USA.

SCYMNPINAE

SCYMNNINI

Scymnus (s. str.) *apetzi* Mulsant, 1846

V e r b r e i t u n g: Mittel- und Südeuropa, Mittelmeergebiet, Russland Kaukasus, Mittelasia, Kasahstan, Iran.
Scymnus (s. str.) frontalis gruppe

Be merkungen: Weibliche Exemplare sind von Tribus Scymnini ohne besondere Merkmale.

Scymnus (s. str.) rubromaculatus (Goeze, 1777)

Scymnus (s. str.) interruptus (Goeze, 1777)

Verbreitung: Mittel- und Südeuropa, Nordafrika, Madeira, Asoren, Kleinasiien.

Scymnus (s. str.) bivulnerus Capra et Fürsch, 1967
Untersuchtes Material: Griechenland, Kreta: Iraklion, 10 m ü.m.H., 06-19.06.2000, leg. D. Petrov.

Verbreitung: Mittelmeerländer, nördlichsten Funde stammen aus Norditalien, Dalmatien und Ungarn.

Be merkungen: Neu für die Griechenlandfauna.

Scymnus (Pullus) subvillosus (Goeze, 1777)
Untersuchtes Material: Griechenland, Kreta: Iraklion, 10 m ü.m.H., 30.06-20.08.2000, leg. D. Petrov.

Verbreitung: Mittel- und Südeuropa, Madeira, Asorien, Kaukasus, Südsibirien, Kleinasiien, Sirien, Nordafrika.

Be merkungen: Neue Art für Griechenland.

Scymnus (Pullus) suturalis Thunberg, 1795

Verbreitung: Europa, Kaukasus, Mittelasien, Sibirien bis der Ferne Osten, Nordafrika.

Be merkungen: Neu für Griechenland.
Scymnus (Mimopullus) fulvicollis Mulsant, 1846
Untersuchtes Material: Griechenland, Kreta: Iraklion, 10 m ü.m.H., 06-19.06.2000, leg. D. Petrov.
Verbreitung: Frankreich, Italien, West Mittelmeergebiet.
Bemerkung: Neue Art für Balkanhalbinsel.

Nephus (Bipunctatus) bipunctatus Kugelann, 1794
Untersuchtes Material: Griechenland, Kreta: Iraklion, 10 m ü.m.H., 06-19.06 und 10-20.06.2000, leg. D. Petrov.
Verbreitung: Europa, Kaukasus, Sibirien bis der Ferne Osten, Mittelasia, Mongolei, Afghanistan, Nordafrika.

Nephus (Bipunctatus) bisignatus etesiacus Fürsch, 1965
Verbreitung: Dalmatien, Kroatien.

STETHORINI

Stethorus sp.
Bemerkung: Die Gattung ist neu für Griechenland.

HYPERASPIDINI

Hyperaspis campestris (Herbst, 1783)
Verbreitung: Mittel- und Südeuropa Kaukasus, Kleinasien.

CHILOCORINAE

CHILOCORINI

Chilocorus bipustulatus (Linnaeus, 1758)
Verbreitung: Paläarktische Region.
Bemerkung: Neu für Kretainsel.
Exochomus nigromaculatus (Goeze, 1777)
Untersuchtes Material: Griechenland, Kreta: Iraklion, 10 m ü.m.H., 06-19.06.2000, leg. D. Petrov.
Verbreitung: Mittel- und Südeuropa, Kaukasus, Kleinasien, Mittelasien, der Ferne Osten von Russland, Mongolei, Korea, China.
Bemerkung: Bisher für Kreta nicht zitiert.

Brumus quadripustulatus (Linnaeus, 1758)
Verbreitung: Europa, Türkei, Syrien, Israel, Irak, Iran, Kasahstan, Mongolei, Nordamerika.

Coccinellinae

COCCINELLINI

Hippodamia (Adonia) variegata (Goeze, 1777)
Verbreitung: Europa, Kaukasus, Sibirien, Korea, China, Indien, Mongolei, der Ferne Osten von Russland, Nordafrika.

Hippodamia (Semialdalia) undecimnotata (Schneider, 1792)
Verbreitung: Mittel-, Ost- und Sudeuropa, Kleinasien, Mittelasien.

Hippodamia (Semialdalia) notata (Laicharting, 1781)
Verbreitung: Europa, Kaukasus, Kleinasien.
Bemerkung: Neu für Mazedonien Coccinellidenfauna.

Adalia decempunctata (Linnaeus, 1758)
Verbreitung: Europa, Kaukasus, Nordiran, Mongolei, Nordafrika.
Coccinella septempunctata Linnaeus, 1758

Verbreitung: Paläarktische Region, Indien, Bangladesch.

Harmonia quadripunctata (Pontoppidan, 1763)

Verbreitung: Europa, Kaukasus, Sibirien, Mittelasien, der Fern Osten von Russia, Kleinasien.

Coccinula quatuordecimpustulata (Linnaeus, 1758)

Verbreitung: Europa, Kaukasus, Südsibirien, Mittelasien, Kleinasien, Nordafrika.

Coccinula sinuatomarginata (Faldermann, 1837)
Untersuchtes Material: Albanien: Pelombasi, 02.06.1994, leg. VI. Sakalian

Verbreitung: Mittel- und Südeuropa, Kaukasus, Mittelasien bis Südsibirien, Kirgisien, Südwestchina, Kleinasien, Maroko.

Be merkung: Vom Balkanhalbinsel aus Bulgarien und Albanien gemeldet.

Oenopia lyncea agnata Rosenhamer, 1874

Verbreitung: Ungarn, Südeuropa, Balkanhalbinsel, Kaukasus, Iran, Armenien, Mittelasien.

Bemerkung: Die Nominatspecies in der Westmittelmeerregion verbreitet.

Propylaea quatuordecimpunctata (Linnaeus, 1758)

Verbreitung: Europa, Asien, Nordafrika.
Calvia (Anisocalvia) quatuordecimguttata (Linnaeus, 1758)
Verbreitung: Europa, Kaukasus, Sibirien, Kleinasien, Korea, China, Mongolei, Japan, der Ferne Osten von Russland, Nordafrika, Nordamerika.

Myrrha octodecimguttata (Linnaeus, 1758)
Verbreitung: Europa, Balkanhalbinsel - Bulgarien, Dalmatien; Kaukasus, Sibirien, Mittelasien, Mongolei, der Ferne Osten von Russland.

Anatis ocellata (Linnaeus, 1758)

PSYLLOBORINI

Psylllobora vigintiduopunctata (Linnaeus, 1758)
Verbreitung: Europa, Kleinasien, Asien, Nordafrika.
Bemerkung: Bisher nicht zitiert für Kretainsel.

Danksagung

Hiermit möchte ich allen Kollegen meine Dankbarkeit aussprechen, die für die Realisierung meiner Untersuchungen geholfen und beigetragen haben.
Tabl. 1. Verbreitung der Fam. Coccinellidae auf der Balkanhalbinsel

+ - Die Arten bekannt bis 1964 Jahr. (BIELAWSKI et GIESE); (+) - Die Arten von literarischen Daten; x - Neue Daten;
- - Fehlen.

<table>
<thead>
<tr>
<th>Species</th>
<th>G.M.T.</th>
<th>SL</th>
<th>KR</th>
<th>BH</th>
<th>MT</th>
<th>SB</th>
<th>MA</th>
<th>AL</th>
<th>GR</th>
<th>BG</th>
<th>RUD</th>
<th>EUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Epilachna argus (Goeffroy, 1762)</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>2. E. elateri elateri (Rossi, 1794)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
</tr>
<tr>
<td>3. Subcoccinella quatuordecimpunctata (L., 1758) (+)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>4. Cynegetis impunctata L., 1767</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5. Lithophilus connatus Panzer, 1796</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. L. graecus Reitter, 1879</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
</tr>
<tr>
<td>7. L. kalawrytus Reitter, 1883</td>
<td>-</td>
</tr>
<tr>
<td>8. *L. turcicus Roubal, 1932</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
</tr>
<tr>
<td>9. *L. creticus Reitter, 1889</td>
<td>-</td>
</tr>
<tr>
<td>10. L. subseriatus Reitter, 1883</td>
<td>-</td>
</tr>
<tr>
<td>11. Coccidula rufa (Herbst, 1783)</td>
<td>-</td>
</tr>
<tr>
<td>12. C. scutellata (Herbst, 1783)</td>
<td>-</td>
</tr>
<tr>
<td>13. Rhyzobius litura (Fabricius, 1787) (+)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>14. Lindorus lophanthae (Blaasduval, 1892)</td>
<td>-</td>
</tr>
<tr>
<td>15. Rodolia cardinalis (Mulsant, 1850)</td>
<td>-</td>
</tr>
<tr>
<td>16. Novius cruentatus (Mulsant, 1846)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>17. Pharoscyamus fleischeri Weise, 1883</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18. Clitostethus arcuatus (Rossi, 1794)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>19. Stethorus punctillum Weise, 1891</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20. *St. gilvifrons Mulsant, 1850</td>
<td>-</td>
</tr>
<tr>
<td>21. Scaurus (s.str.) nigrinus Kugelann, 1794</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
</tr>
<tr>
<td>22. Sc. (s.str.) abietis Paykull, 1798</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>23. Sc. (s.str.) apetzi Mulsant, 1846 (+) (+)</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>24. *Sc. (s.str.) bivulnerus Capra et Fürsch, 1967</td>
<td>-</td>
<td>x</td>
<td>(+)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
</tbody>
</table>
| 25 | *Sc. (s.str.) pallipediformis pallipediformis
Günther, 1958 | - | - | - | - | - | - | - | (+) | - | (+) | - |
| 26 | Sc. (s.str.) rufipes (Fabricius, 1798) | - | - | + | - | - | - | - | - | - | - | - |
| 27 | *Sc. (s.str.) mimulus
Capra et Fürsch, 1967 | - | - | - | - | - | - | - | - | - | - | - |
| 28 | Sc. (s.str.) frontal (Fabricius, 1787) (+) | - | + | + | + | + | + | - | - | - | - | (+) |
| 29 | *Sc. (s.str.) marginalis (Rossi, 1794) (+) | - | - | (+) | - | - | - | - | - | - | - | - |
| 30 | Sc. (s.str.) doriai Capra, 1924 | - | - | - | - | - | - | - | - | - | - | - |
| 31 | *Sc. (s.str.) quadruccitus Capra, 1924
(sub flavicollis - Biel et Giese, 1964) | - | - | - | - | + | - | (+) | (+) | - | - | - |
| 32 | *Sc. (s.str.) mesasiaticus Savojkaja, 1968 | - | - | - | - | - | - | - | - | - | - | - |
| 33 | Sc. (s.str.) rubromaculatus (Goeze, 1777) | - | + | + | + | x | + | - | (+) | - | - | - |
| 34 | Sc. (s.str.) interruptus (Goeze, 1777) (+) | - | - | + | - | + | x | - | - | - | - | - |
| 35 | *Sc. (s.str.) femoralis (Gyllenhal, 1827) | - | - | - | - | - | - | - | - | - | - | - |
| 36 | Scymnus (Pullus) auritus (Thunberg, 1795) | - | - | - | - | - | - | - | - | - | - | - |
| 37 | S. (P.) subvillosus Goeze, 1777 | - | + | (+) | + | + | + | + | x | - | - | - |
| 38 | S. (P.) fraxini (Mulsant, 1850)
(sub globosus - Biel et Giese, 1964) (+) | - | + | + | - | - | - | - | - | - | - | - |
| 39 | S. (P.) suturalis (Thunberg, 1795) | - | - | - | - | x | (+) | - | - | - | - | - |
| 40 | *S. (P.) ferrugatus Moll., 1785 (+) | - | - | - | - | - | - | - | - | - | - | - |
| 41 | S. (P.) oertzeni Weise, 1886 | - | - | - | - | - | - | - | - | - | - | - |
| 42 | S. (P.) pallidivestis (Mulsant, 1853) | - | + | + | - | - | - | - | - | - | - | - |
| 43 | S. (P.) mülleri Penecke, 1907 | - | - | - | - | - | - | - | - | - | - | - |
| 44 | S. (Neopullus) impexus Mulsant, 1850 | - | + | + | - | - | - | - | - | - | - | - |
| 45 | S. (N.) ater Kugelann, 1794 | - | - | - | - | - | - | - | - | - | - | - |
| 46 | S. (N.) limbatis (Stephens, 1831)
(sub Pullus testaceus - Biel et Giese, 1964) | - | + | + | - | - | - | - | - | - | - | - |
| 47 | S. (N.) haemorrhoidalis Herbst, 1797 | - | - | - | - | - | - | - | - | - | - | - |
| 48 | *S. (Mimopullus) flagellisiphonatus
Fürsch, 1969 | - | - | - | - | - | - | - | - | - | - | - |
<p>| 49 | **S. (M.) fulvicollis Mulsant, 1846 | - | - | - | - | - | - | - | x | - | - | - |
| 50 | Nephis (s.str.) ludyi Weise, 1879 | - | + | - | - | - | - | - | - | - | - | - |
| 51 | N. (s.str.) redtenbacheri Mulsant, 1846 | - | + | - | - | - | - | - | - | - | - | - |</p>
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>N. (s.str.) quadrmaculatus (Herbst, 1783) (†)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>(†)</td>
<td>-</td>
<td>(†)</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>N. (s.str.) includens Kirsch, 1970</td>
<td>-</td>
</tr>
<tr>
<td>54.</td>
<td>*N. (s.str.) ulbrichi Fürsch, 1977</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>55.</td>
<td>*N. (s.str.) schatzmayri Canepari et Tedeschi, 1977</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>56.</td>
<td>*N. (s.str.) kreticus Fürsch, 1965</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>57.</td>
<td>N. (Bipunctatus) bipunctatus (Kugelann, 1794)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>58.</td>
<td>N. (B.) nigricans Weise, 1879</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>59.</td>
<td>*N. (B.) bisignatus etesiacus Fürsch, 1965</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.</td>
<td>N. (B.) pallidus Fürsch, 1980</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
</tr>
<tr>
<td>61.</td>
<td>N. (Sidis) biguttatus Mulsant, 1850 (sub Nephys benevatys - Biel. et Giese, 1964)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.</td>
<td>N. (S.) splendidululus Stenius, 1952</td>
<td>-</td>
</tr>
<tr>
<td>63.</td>
<td>*N. (S.) semirufus Weise, 1885</td>
<td>-</td>
</tr>
<tr>
<td>64.</td>
<td>*N. (S.) horioni Fürsch, 1965</td>
<td>-</td>
</tr>
<tr>
<td>65.</td>
<td>*N. (S.) hiekei Fürsch, 1965</td>
<td>-</td>
</tr>
<tr>
<td>66.</td>
<td>*N. (S.) anomus Mulsant, 1852</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>67.</td>
<td>N. (Diomus) rubidus Motschulsky, 1837</td>
<td>-</td>
</tr>
<tr>
<td>68.</td>
<td>Platynaspis luteorubra (Goeze, 1777)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>69.</td>
<td>Chilocorus bipustulatus (L., 1858)</td>
<td>-</td>
</tr>
<tr>
<td>70.</td>
<td>Ch. renipustulatus Scriba, 1790</td>
<td>-</td>
</tr>
<tr>
<td>71.</td>
<td>Exochomus nigromaculatus (Goeze, 1777)</td>
<td>-</td>
</tr>
<tr>
<td>72.</td>
<td>Brunus quadripustulatus (L., 1758) (†)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>73.</td>
<td>*B. cedri (Sahlberg, 1913)</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
</tr>
<tr>
<td>74.</td>
<td>Hyperaspis campestris (Herbst, 1783) (†) (†) (†)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>75.</td>
<td>H. femorata (Motschulsky, 1837)</td>
<td>-</td>
</tr>
<tr>
<td>76.</td>
<td>H. reppensis reppensis Herbst, 1783</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77.</td>
<td>H. reppensis quadrmaculata Redtenbacher, 1843</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>(†)</td>
<td>(†)</td>
<td>(†)</td>
<td>(†)</td>
</tr>
<tr>
<td>78.</td>
<td>*H. concolor (Suffrian, 1843)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>79.</td>
<td>*H. inexpectata Günter, 1959 (†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>80.</td>
<td>*H. pseudopustulata (Mulsant, 1853)</td>
<td>-</td>
<td>-</td>
<td>(†)</td>
<td>(†)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
81. *H. minois* Fürsch, 1985
82. *H. duvergeri* Fürsch, 1985
83. *H. chevelati* Canepari, 1985
84. *H. peizi* Fürsch, 1985
85. *H. uhligi* Fürsch, 1985
86. Hippodamia (s.str.) septemmaculata
 (De Geer, 1775)
87. H. (s.str.) tredecimpunctata (L., 1758)
88. H. (Adonia) variegata (Goeze, 1777)
89. H. (Semidalia) notata (Leichnarting, 1781)
90. H. (S.) undecimnotata (Schneider, 1792)
91. *H. (Adaliopsis) alpina* alpina (Villa, 1835)
92. *H. (A.) alpina* redtenbacheri Capra, 1928
93. Aphipecta obliterata (L., 1758)
94. Anisosticta novouedecimpunctata (L., 1758)
95. Bulaea lichatschovi (Hummel, 1827)
96. Tithapsis sedecimpunctata (L., 1761)
97. Adalia bipunctata (L., 1758)
98. A. decumpunctata (L., 1758)
99. Coccinella magnifica Redtenbacher, 1849
 (sub divaricata - BIEL. et GIESE, 1964)
100. C. quinquepunctata L., 1758
101. C. septempunctata L., 1758
102. C. undecimpunctata L., 1758
103. *C. hyeroglyphica* L., 1758
104. Coccinula quatrourdimpunctata (L., 1758)
105. C. sinuatomarginata (Faldermann, 1837)
106. Oenopia conglobata (L., 1758)
107. O. impustulata (L., 1767)
108. O. lynceae agnata Rosephauer, 1847
109. *O. oncinia* (Olivier, 1808)
110. Harmonia quadripunctata
 (Pontoppidan, 1763)
<table>
<thead>
<tr>
<th></th>
<th>111. Myrrha octodecimguttata (L., 1758)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sospiata (s.str.) vigintiguttata (L., 1758)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sospiata (Myzia) oblongoguttata (L., 1758)</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Anatis ocellata (L., 1758)</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Calvia (s.str.) decemguttata (L., 1767)</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C. (Anisocalvia) quatuordecimguttata</td>
<td>(L., 1758)</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>x</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C. (A.) quinquedecimguttata</td>
<td>(Fabricius, 1777)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Propylea quatuordecimpunctata (L.)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Halyzia sedecimguttata (L., 1758)</td>
<td>(+)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Vibidia duodecimguttata (Poda, 1761)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Psylllobora vigintiduopunctata (L., 1758)</td>
<td>(+)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
</tr>
</tbody>
</table>

Alle taxone:

| | 2 | 6 | 67 | 30 | 33 | 32 | 32 | 43 | 68 | 87 | 28 | 29 |

	114. *Anatis ocellata* (L., 1758)	(+)	-	-	-	-	-	-	-	-	-	-	-
	115. *Calvia* (s.str.) *decemguttata* (L., 1767)	(+)	-	+	-	-	-	-	-	-	-	-	-
	116. *C. (Anisocalvia)* *quatuordecimguttata*	(L., 1758)	(+)	-	-	+	-	+	x	(+)			
	117. *C. (A.) quinquedecimguttata*	(Fabricius, 1777)	-	-	+	-	-	+	-	+	(+)		
	118. *Propylea quatuordecimpunctata* (L.)	-	+	-	+	+	+	+	+	(+)			
	119. *Halyzia sedecimguttata* (L., 1758)	(+)	+	-	-	+	-	+	-	+	-		
	120. *Vibidia duodecimguttata* (Poda, 1761)	(+)	+	+	+	-	+	+	+	-			
	121. *Psylllobora vigintiduopunctata* (L., 1758)	(+)	+	-	+	-	+	+	+	+	+	(+)	
Literatur

Anschrift des Verfassers:
Vassila Jorandova
Nationales Naturhistorisches Museum
Boul. Tzar Osvoboditel 1
1000 Sofia, Bulgarien
E-mail: vas_jorandova@abv.bg

Eingegangen am 11.12.2002
Калинки (Coleoptera: Coccinellidae) от Република Македония, Албания, Гърция и Турция с ревизиран списък на видовете от Балканския полуостров

Василя ЙОРДАНОВА

(Резюме)

Съобщавам се 17 вида калинки, събрани на територията на Република Македония, 7 вида от Албания, 8 вида от Турция и 11 вида (плос един род) от Гърция (остров Крит). Нови за фауната на Р. Македония са 4 вида, а на Гърция - 6 вида (6 частност на о-в Крит - 11) и род Stethorus Weise. Видът Sc. (Mimopullus) fulvicollis e нов за Балканския полуостров. До работата на BIELAWSKI & GIESE (1964) за балканските страни са известни 86 вида. Съвременните видов състав е допълнен с още 35 таксона и наброява общо 121 вида и подвида (табл. 1). Броят на известните досега видове и подвидове калинки се разпределя по следния начин: италианска част на полуострова - 24, Словения - 5, Хърватска - 67, Босна и Херцеговина - 32, Черна гора - 33, Сърбия - 32, Р. Македония - 31, Албания - 43, Гърция - 68, България - 87, Румънска Добруджа - 28 и Европейска Турция - 29.
List of caddisflies (Insecta: Trichoptera) collected by Bulgarian scientists in Turkey

Krassimir KUMANSKI, Füsun SIPAHILER

Abstract. A faunistic list of caddisflies (Trichoptera), based on the material collected from 52 localities in Turkey by Bulgarian scientists is given in the present study. The list contains 67 species belonging to 10 families. *Micropterna fissa* McLachlan is newly recorded in Turkey. The first two trogloxene caddisflies in Anatolia are reported.

Key words: Trichoptera, Turkey, Faunistics

Introduction

The Trichoptera fauna of Turkey was poorly known until publishing the first list in 1984 (MALICKY & SIPAHILER, 1984). In that paper 204 species are listed. A second detailed list was presented in 1987, increasing the total number of known species to 235 (SIPAHILER & MALICKY, 1987). In 1993 and 1995 additional lists were published, so the number of known species increased to 313 (MALICKY & SIPAHILER, 1993; SIPAHILER, 1996). After that, many new species and new records were published, so the number of the known species of Turkey reached 366. In this paper, a faunistic list of Trichoptera is given, based on the material collected for several years mainly by Bulgarian scientists. Almost all of the material was collected on light. The list of the determined taxa, which contains 2671 specimens, includes 67 species belonging to 23 genera and 10 families, respectively (Table 1). Among them *Micropterna fissa* McLachlan, 1875 is newly recorded in Turkey and *Micropterna hatalitla* Malicky, 1974 and *Stenophylax meridiorientalis* Malicky, 1980 are the first regular trogloxene species collected in caves in Anatolia. The list of the localities is arranged by geographic regions (SIPAHILER & MALICKY, 1987).
List of the localities

List of the localities

Region 1 (Marmara Region)

Region 3 (Northwestern Anatolia)

Region 4 (Central Anatolia)

Region 5 (Southern Anatolia)
15. Antalya, SW of Antalia, 13 km on the road to Altinyaka to Denizli, 700 m, (on light), 23.11.1998, leg. S. Beshkov.

1 J. Gelbrecht, T. Dreichsel and B. Schacht - German entomologists, partly accompanying the Bulgarian entomologists
22. Mersin, Bolkar Dagi, above Çamliyayla, 1600 m, 11.6.1996 (on light),
leg. S. Beshkov, J. Gelbrecht & T. Drechsel.
23. Adana, Osmanyne,Yarpuz vill., 980 m, 12.6.1996, (on light), leg. S.
Beshkov.

Region 6 (Northeastern Anatolia)
24. Artvin, Karadeniz Mts., above Yusufeli, 1800 m, 15.7.1995, (on light),
leg. S. Beshkov & J. Gelbrecht.
25. Artvin, Karadeniz Mts., uder Kaçkar Peak, near Yaylalar vill. above
Yusufeli, 1780 m, 17.7.1995, leg. S. Beshkov & J. Gelbrecht.
26. Artvin, Karadeniz Mts., above Yusufeli, Bahral vill., 945 m, on the way
27. Artvin, Karadeniz Mts., above Yusufeli, 630 m, on the way to Sartgöl,
28. Amasya, Yenice, Direkli vill., 13 km before Amasya from Akdag, 580 m,
29. Erzurum, Tortum, 1580 m, near dried river, (on light), 3-4.7.1996, leg.
B. Guţorguiiev.
30. Giresun, Giresun Daglari, Egridin pass, 1450 m (on light), 4-5.7.1996,
leg B. Guţorguiiev.
31. Erzurum, 10 km southern above Ispir, 1800-2010 m (on light), 25.6.2000,
leg. S. Beshkov.
32. Erzurum, Karadeniz Daglari, ca. 6 km southern above Ispir, 1600 m (on
33. Karadeniz Daglari, ca.15 km northern of Ovit Dagi Geçidi, 1700 m, (on
light), 27.6.2000, leg. S. Beshkov.
34. Karadeniz Daglari, Ovit Dagi, southern slopes, above Ovit Dagi Geçidi,
2700 m, (on light), 29.6.2000, leg. S. Beshkov & B. Schacht.
35. Karadeniz Daglari, Ovit Dagi, northern slopes, above Ovit Dagi Geçidi,
2100 m, (on light), 30.6.2000, leg. S. Beshkov & B. Schacht.
36. Karadeniz Daglari, ca. 10 km south above Ispir, above Köpencuk vill.,
1850 m (on light), 4.7.2000, leg. S. Beshkov & B. Schacht.
37. Karadeniz Daglari, Ispir, Düzköy above Çoruh valley, 2200 m (on light),
1.7.2000, S. Beshkov.
38. Karadeniz Daglari, Prov. Erzurum, Çoruh valley, 20 km E from Ispir, on
the road to Yusufeli, 1060 m (on light), 22.4.2001, leg. S. Beshkov &
J.Gelbrecht.
S. Beshkov.
40. Karadeniz Daglari, below Ovit Dagi Geçidi, 2400 m (on light), 27.7.2001,
leg. S. Beshkov.
41. Erzurum, Ispir, Mescit Daglari, Çoruh valley, near Yukari Ozbar, 1300
m (on light), 7.7.2001, leg. S. Beshkov.
42. Erzurum, Karadeniz Daglari, Çoruh valley, 25 km from Ispir to

* see Footnote 1 on previous page
44. Erzurum, Karadeniz Daglari, near Köprüköy vill., 2030 m (on light)

Region 7 (East Anatolia)
47. Erzurum, southern side of Gölyurt Geçidi, 1900 m (on light), 3.7.2000, leg. S. Beshkov.
48. Erzurum, 25 km from Gölyurt Geçidi, near Kirik vill., 2100 m (on light),
2.7.2000, leg. S. Beshkov.
51. Van, ca. 7 km E of Güzeldere Geçidi, on the road to Bagkale, 2450 m (on
52. Erzurum, ca. 10 km S below Gölnet Geçidi, 2000 m (on light), 5.8.2001, leg. S. Beshkov.

List and localities of the determined taxa

Table 1
List of the determined taxa. Localities - bolded numbers; M - males;
F - females; FS - Collection Sipahiler)

<table>
<thead>
<tr>
<th>Family Rhyacophilidae</th>
<th>Localities and material collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhyacophila fasciata alioia Martynov, 1916</td>
<td>26: 1 F; 43: 1 F</td>
</tr>
<tr>
<td>Rhyacophila nubila Zetterstedt, 1840</td>
<td>3: 3 M, 3 F; 20: 1 M; 23: 9 M, 4 F; 30: 1 F; 48: 2 M, 2 F; 50: 3 F; 52: 9 M, 4 F</td>
</tr>
<tr>
<td>Rhyacophila subovata Martynov, 1913</td>
<td>33: 1 F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Glossosomatidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossosoma capitatum Martynov, 1913</td>
</tr>
<tr>
<td>Agapetus delicatus McLachlan, 1884</td>
</tr>
<tr>
<td>Agapetus sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Hydroptilidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allotrichia vilnensis Raciecka, 1937</td>
</tr>
<tr>
<td>Hydroptila forcipata Eaton, 1873</td>
</tr>
<tr>
<td>Hydroptila occulta Eaton, 1873</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Philopotamidae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philopotamus sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Psychomyiidae</th>
</tr>
</thead>
</table>
| Psychomyia pusilla Fabricius, 1871 | 11: 5 F; 27: 1 M; 31: 1 F; 32: 2 M; 36: 1 F; 41: 6 M, 4 F; 42: 3 F; 43: 2 F; 44: 1 M; 45: 9 M;
<table>
<thead>
<tr>
<th>Genus</th>
<th>Year</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinodes sp. (Females)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Polycentropodidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plectrocnemia latissima Martynov, 1913</td>
<td></td>
<td>43</td>
<td>1 M</td>
</tr>
<tr>
<td>Polycentropus flavomaculatus Pictet, 1834</td>
<td></td>
<td>52</td>
<td>1 M</td>
</tr>
<tr>
<td>Family Hydropsychidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheumatopsyche lepida Pictet, 1834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheumatopsyche capitella Martynov, 1927</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche cetibeli Malicky et Sipahiler, 1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche instabilis Curtis, 1834</td>
<td></td>
<td>13</td>
<td>1 M</td>
</tr>
<tr>
<td>Hydropsyche kebab Malicky, 1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche krassimiri Malicky, 2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche lepnevae Botosaneanu, 1967</td>
<td></td>
<td>25</td>
<td>1 F, 40: 1 F</td>
</tr>
<tr>
<td>Hydropsyche mahrkusha Schmid, 1959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche martynovi Botosaneanu, 1967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche orduenis Sipahiler, 1987</td>
<td></td>
<td>24</td>
<td>1 M</td>
</tr>
<tr>
<td>Hydropsyche acuta Martynov, 1909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche bitlis Malicky, 1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche bulbifera McLachlan, 1878</td>
<td></td>
<td>69</td>
<td>1 M</td>
</tr>
<tr>
<td>Hydropsyche consanguinea McLachlan, 1884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche contubernalis McLachlan, 1865</td>
<td></td>
<td>29</td>
<td>2 M</td>
</tr>
<tr>
<td>Hydropsyche cornuta Martynov, 1909</td>
<td></td>
<td>41</td>
<td>1 M</td>
</tr>
<tr>
<td>Hydropsyche modesta Navas, 1925</td>
<td></td>
<td>26</td>
<td>2 M</td>
</tr>
<tr>
<td>Hydropsyche cf. Incognita Pitsch, 1993</td>
<td></td>
<td>26</td>
<td>2 M</td>
</tr>
<tr>
<td>Hydropsyche cf. pellucidula Curtis, 1834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche sakarawaka Schmid, 1959</td>
<td></td>
<td>30</td>
<td>1 M, 1 F</td>
</tr>
<tr>
<td>Family Brachycentridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mircasema bifoliatum Martynov, 1925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Limnephilidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drusus bayburtii Cakin, 1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drusus caucasicus Ulmer, 1907</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drusus simplex Martynov, 1927</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilus auricula Curtis, 1834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilus bipunctatus Curtis, 1834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilus hirsutus Pictet, 1834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilus lunatus Curtis, 1834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilus ponticus McLachlan, 1898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilus vittatus Fabricius, 1798</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenophylax meridiorientalis Malicky, 1980</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 F; 47: 12 M, 1 F; 48: 12 M, 24 F; 50: 2 F; 52: 20 (M + F) ; 13: 1 F; 41: 1 F; 43: 2 F
Stenophylax permistus McLachlan, 1895 19: 1 F
Micropterna coiffa Decamps, 1962 15: 2 M, 1 F; 16: 2 M
Micropterna flissa McLachlan, 1875 13: 2 M, 3 F (1 M, 2 F in coll. FS); 15: 1 M
Micropterna hatalitla Malicky, 1985 12: 2 M, 1 F (1 M, 1 F in coll. FS);
18: 6 M, 22 F; 31: 1 F; 34: 1 M, 2 F
Micropterna nycterobia McLachlan, 1875 19: 4 M, 4 F; 21: 4 M, 1 F
Micropterna sipahilerae
 Kumanski et Malicky, 1997 30: 1 M (the Holotype)
Micropterna taurica Martynov, 1917 6: 1 M; 8: 1 M; 12: 1 F
Micropterna muehleni McLachlan, 1884 12: 1 M, 1 F
Micropterna sp. 1 14: 1 F
Micropterna sp. 2 10: 1 F
Micropterna sp. 3 35: 1 F
Potamophylax luctuosus armeniacus Mey, 1979 24: 4 M, 1 F; 25: 14 M, 2 F; 26: 4 M;
33: 14 M, 4 F; 34: 3 M; 35: 9 M

Family Sericostomatidae
Sericostoma grusiense Martynov, 1913 24: 14 M, 22 F; 25: 1 F; 26: 7 M, 12 F;
27: 1 M, 2 F; 35: 1 F; 36: 1 F
Sericostoma flavicorne Schneider, 1845 29: 16 M, 4 F (6 M, 2 F in coll. FS);
30: 18 M, 11 F (10 M, 5 F in coll. FS)

Family Lepidostomatidae
Lepidostoma hirtum Fabricius, 1775 3: 2 F; 47: 1 M (in coll. FS)
Dinarthrum chaldyrense Martynov, 1909 29: 1 F; 51: 1 M

Family Leptoceridae
Athripsodes ilischi Malicky, 1987 41: 3 M (1 M in coll. FS)
Athripsodes longispinosus Martynov, 1909 3: 2 M, 2 F; 11: 2 M, 1 F
Athripsodes sewangensis Martynov, 1925 52: 14 M, 36 F (6 M, 6 F in coll. FS)
Setodes dehensurae Cakin et Malicky, 1983 42: 1 M; 43: 5 M (3 M in coll. FS)
Setodes viridis Fourcroy, 1785 41: 3 M, 1 F; 42: 11 M, 3 F (4 M, 1 F in coll. FS)

Remarks

Hydropsyche cetibeli Malicky et Sipahiler. This species was
described occurring in SW Turkey, Cetibeli (Province of Mugla) (MALICKY &
SIPAHILER, 1993, and found further on in several localities in the Province of
Antaya (Murtiçi, Akseki, Manavgat, Cayi) (SIPAHILER, unpublished data). It is
an endemic of the SE-Mediterranean region, known outside Turkey only on
some Greek E-Aegean islands - Chios, Lesbos and Samos (MALICKY, 2001).

Hydropsyche orduensis Sipahiler. This endemic species of NE
Anatolia was described occurring in the Province of Ordu (SIPAHILER, 1987).
Later on it was reported from Çavşat, Çermik Köyü (Province of Artvin)
(SIPAHILER, 2001). According to latest data (Loc. 24 in the present paper), the
species occurs also in the Province of Rize (Kaçkar Mountains).

Hydropsyche bittis Malicky. This SE Anatolian endemic was recorded
and described in the eastern Province of Bitlis (MALICKY, 1986), and later
reported from Saimbeyli (S Anatolia, the northern part of the Province of
Adana) (SIPAHILER, 1996). The Province of Adana is probably the westernmost border of its distribution.

Hydropsyche cf. incognita Pitsch. and **Hydropsyche cf. pellucidula** Curtis. Because of some still existing taxonomic problems within the *pellucidula*-species group (especially in the Anatolian region) these two species cannot be considered definitely determined.

Micropterna hatatitla Malicky. This species was recorded and described in the Province of Ankara (MALICKY, 1985) and considered an endemic of Anatolia. Further on, it was found in several southern (Antalya, Elmali, Gömbe /2800 m, 26.06.1988, 1 M and 1 F pupae/, Konya, Hadim, Geyik Dagi, Egrigöl /2000, 01.09.1996, 8 M, 2 F pupae/) and north-western regions
of Turkey (Kasatmonu, 14 km south of Küre, 1200 m, 02.06.2002, 6 M and 2 F pupae) (SIPAHLER, unpublished data). The additional data in the present paper show that it is broadly distributed also in NE Turkey (Locs. 12, 31, 34). Locality Nr. 18 in the Taurus Mts. near Beyşehir is the first report of a Trichoptera found in a cave in Turkey. However, the species was discovered also in the E Rhodopes Mts., Bulgaria (KUMANSKI, 1993), as well as in the Pirin Mts. in the same country (Bayovi Dupki Circus, cave No. 29, 22.09.2002, 1 M, leg. P. Beron & B. Petrov) (KUMANSKI, unpublished data). Thus, *M. hatatitila* should be considered a SE European-Anatolian species rather than an endemic of Turkey.

Fig. 2. *Micropterna* sp. 2, Female genitalia: 1 - lateral view; 2 - dorsal view; 3 - ventral view
Micropterna spp. 1, 2, 3. These females belong to three different taxa and have not been described so far. They (or, some of them) could belong to either already known species, modeled after males, or to new ones. Their species association so far seems rather preliminary, therefore we give only their genital figures (Figs. 1, 2 and 3) and no other comments.
Potamophylax luctuosus armeniacus Mey. According to the opinion of one of us (KK) this taxon could be elevated to a specific status. However, a revision of the whole material available (including the type series of P. l. armeniacus (Mey, 1979)) needs to be done to solve the problem. We would only note, that all the males mentioned here do not show any trace of variability of the genital structures. A similar revision is to be done soon (MEY & KUMANSKI, unpublished data).

Setodes dehensure Cakin et Malicky. This is an endemic species of Turkey. It was recorded and described in S Anatolia (Antalya, Manavgat, Köprüçay), and later on discovered further eastwards in the Province of Antalya (Gündoğmuş, Alara Çayı) and the Province of Adana, Saimbeyli (SIPAHILER, unpublished data). Now it was found also in the NE Turkey (Locs. 42 and 43).

Acknowledgement

We wish to thank the Scientific Research Council of Turkey (TUBITAK-BAYG NATO-D), for supporting this research.

References

Received on 18.11.2002
Списък на ручейници (Insecta: Trichoptera), събрани от български зоолози в Турция

Красимир КУМАНСКИ, Фюзун СИПАХИЛЕР

(Резюме)

Съобщаваме се фаунистични данни за 67 вида ручейници (Trichoptera), събрани в Турция през периода 1993-2000 г. предимно от български зоолози. С изключение на специално упоменатите екземпляри, материалът се съхранява в алкохолни колекции на Националния природонаучен музей в София. Micropterna sipahileri Kumanski et Malicky е описан като нов за науката в друга публикация. Видът Micropterna fissa McLachlan e нов за фауната на Турция. Stenophylax meridiorientalis McLachlan и Micropterna hatatitla Malicky са първите ручейници, съобщени от мурски пещери. Те принадлежат към категорията "редовни проголоксени" ("regular trogloxenes"). M. hatatitla е същевременно нов член от тази екологична категория. Три други вида от рода Micropterna са установени само по женски индивиди. Тъй като засега не може да бъде уточнено дали те (или някои от тях) принадлежат към нови за науката вида, или към вида, чиито женски са неописани до този момент, тук се ограничаваме само с представянето на съответните генитални фигури (фиг. 1, 2 и 3). За някои неестествено познати или все още проблематични таксони са направени съответните бележки.
Каталог и определителни таблици на стопоножките от клас Chilopoda в България от Павел Стоев

Алекси ПОПОВ

Една нова книга на издателство Pensoft под номер 25 в поредицата Series Faunistica зарежда българските зоологи. Тази първа книга за българските хилоподи представлява каталоз и определителни таблици, за всеки вид са дадени синонимна листа в общ хронологичен ред (независимо от публикуваното име), хоризонтално и вертикално разпространение в България, списък на всички находища в нас, зоогеографска категория на ареала, обитавани хабитати и критични или пояснителни бележки за вида в страната. В България се срещат 105 видове: 104 вида в едри општите подвид на Harpophilobius anodus (Latzel) с неясен макроаномичен статус. В зоогеографски аспект групата е извършено интересна с висока степен на ендемизма. Ендемични са 37% от българските видове или 39 вида и подвида, от които 23 български и 16 балкански ендемита. Дори и при евентуално намаляване в бъдеще процентът ще остане висок.

Достойнствата на монографията на П. Стоев са преди всичко в съществения принос в областта на таксономията, фаунистиката и в помощ на детерминирането. Обявени са 6 нови синонима, а 8 предишни публикации на автора други 5 синонима. Новия българска фауна e Lithobius dentatus Koch, a L. cf. apfelbecki Verhoeff, Harpophilobius cf. intermedius Matic, Eupolysirhobius gracilis (Absolon) и Strigamia engadina (Verhoeff) също са публикувани като нови за страната от П. Стоев през последните години. Определителните таблици са оригинални и с голяма стойност, защото по начало са рядкост в литератураната верху хилоподите, а за Балканския полуостров с много ендемити въобще липсват таблици.

Би могло да се похвали на автора да разследа по-подробно в бъдеще въпросите от общата част на монографията, напр. за възможни с таксономични проблеми, и да премине на сферата на фактообраза към обсъждане и обясняване на някои от закономерностите, напр. за високопланинските вида или за широко разпространения, но рядко у нас вида. Би трябвало също да се поразглеждат и презираат някои от избрани хабитати, напр. № 2 - от храсти и ливади до скалист екопроб и № 4 - от дървета и паркове до минни залези. Разположение за вида, известни над 2000 м (стр. 13), е изчислен, тъй като само посочен списък от видовете в субалпийски и алпийски хабитати (стр. 14-15). Едностоетно изключение е Cryptops parisit Brölemann, който се среща у нас от 100 до 1850 м (стр. 61) и не става ясно защо е включен в състава на субалпийските и алпийски хабитати. Тези дребни неточности не могат да засечат значителния принос в каталога.

Ненавършил още 30-годишна възраст, Павел Стоев се ползва с добро име в срещите с специалисти по хилоподите в света. Той извършва външни пътуване от автор на списък на балканските вида през обзор на пещерните вида в България до разглеждання тук каталог на групата в България и готовата за защита гокорска дисертация върху балканската фауна.
Технологични проблеми свързани с мигама *Dreissena polymorpha* в ТЕЦ "Марцица Измок" 2

Здравко ХУБЕНОВ

Abstract. The introduction of the Zebra mussel *Dreissena polymorpha* to Ovcharitsa Dam causes serious problems to the exploitation of one of the biggest power plants - Maritsa East - 2. Every year the power plant loses several million BGL for cleaning up the shell banks, which plug up its pipelines. It is expected that the shell will soon reach Rozov kladenets Dam and the rivers Maritsa and Toundzhha.

Key words: *Dreissena polymorpha*, technological problems, Maritsa-East 2 TPP, Bulgaria

Абисохомоният ареал на *Dreissena polymorpha* (Pallas, 1771) (известна като черна странствуваща мига или зеброва мига) е локализиран в Понтий-Каспийската бръччична област (СТАРОБОГАТОВ, 1970; БАНАРЕСКУ, 1990). През XIX и XX в. видът се разпространява в речните системи на цяла Европа, а през 1988 г. е пренесен и в Северна Америка (ез. Мичигън). Като обрастател *D. polymorpha* причинява големи финансови загуби, които само в САЩ надхвърлят 5 милиарда $.

През януари 2002 г., по настояване на МОСВ бе осъществена командировка до ТЕЦ "Марцица Измок" 2 във връзка с проблеми, предизвикани от поява на мигама *Dreissena* в яз. "Обчарцица". С любезното съдействие на инж. В. Пачевживев, гириектор експлоатация на централата, бяхме запознати с възникналата ситуация.

Оказа се, че действително се отнася за интродукция на *Dreissena polymorpha*, най-вероятно със заритителен материал от крайдунавски
вьодеми. Изхождайки от максималните размери на отделни екземпляри и високата плътност на обрасвания (от 11 000 до 79 000 екс./м²) (данните са от случайно попаднали, пополнени във водата предмети в района на централата и са силно занижен, тъй като не са отчитани едногодишните екземпляри) може да се предполага, че интродукцията е извършена преди повече от 4 години. Специфичните температурни условия в язовира, създадени от централата, са оптимални за развитието на този обрастател, който през топлото полугодие в някои части на водоема достига плътност между 300 000 и 500 000 екс./м².

Проблемите на централата се проявяват от 2 години и се изразяват в блокиране на охладителната система, черпеща вода от язовира. Подвижните решетки преди подаващите помпи през топлото полугодие са задръстват от мигенни групи. Върху тях попадат езерни раици, покриви с малки (единогодишни и двугодишни) дреденси, което говори за висока степен на възпроизводство на мигената популяция в района на водоземането. На около 300 м от помпената станция се намират кондензаторите на турбините и маслените охладители. Всички водни магистрали от помпите до турбините работят непрекъснато. При тяхната спиране неподвижната вода създава условия за прикрепяне на мигените ларви. Шахтите на подвижните решетки са покрити с гебел (4-9 см) пласт от миги. Според специалистите от централата подобен пласт има и в магистралните тръбопроводи. При работа на системата се откъсват цели мигени групи и запушват решетките преди кондензаторите на турбините, след което атоматизираната изключва съответната мощност. Още по-уязвими са маслените охладители, чиито водни тръби с просвет около 15 mm бързо се блокират от мигите.

Специалистите от централата са принудени през определени интервали от време да изключват съответната водопогащащ система и след изпомпване на водата ръчно да отстраняват мигените натрупвания. При това, поради лошата мирима, отделна от разлагащите се миги, се налага да се работи с противогази. Изхвърленото количество миги е значително и за изнасянето му се използват камъни. По мнение на ръководството на централата са регистрирани загуби от няколко милиона лева.

Налагат се следните изводи:
В язовир "Обчарцица" е интродуцирана мигата D. polymorpha, която се намира в най-активно състояние на колонизиране на водоем с изключително благоприятни условия за нейното разбиване.
В негадечко бъдеще трябва да се очаква поява на мигата в язовир "Розов кладенец" и речните системи на Тунджа и Марица.
Плътността на мигата в реките няма да бъде висока, тъй като течението със скорост над 0.8 м/с е неблагоприятно за нейното развити.
Икономически проблеми могат да възникнат при проникването на мигама в стагнали водни източници с определено предназначение и в различни водосъбранства съоръжения.

Литература

Старобогатов Я. 1970. Фауна молюсков и зоогеографическое райониране континенталных водоемов земного шара. Наука, Ленинград, 372 с.

Постъпила на 24.06.2002

Адрес на автора:
Здравко Хубенов
Институт по зоология
бул. Цар Освободител 1
1000 София

Technological problems concerning Zebra mussel
Dreissena polymorpha in MARITSA-EAST 2 TPP

Zdravko HUBENOV

(S u m m a r y)

The appearance of the Zebra mussel *Dreissena polymorpha* in the river network of the Bulgarian Aegean Sea basin is recorded - Ovcharitsa dam lake. Density up to 79 000 specimens/m² is established, however it is assumed this value as highly reduced. The problems caused by the mussel to the cooling system of the biggest Bulgarian thermal power plant - Maritsa East 2 are described. These problems appeared in the last 2 years.
Среща на изследователите на бозайници
в Източни Рогопи

Ян БУИС, Теодора ИВАНОВА

През юли 2002 Групата за полеви проучвания (Field Working Group, FWG) на Холандското дружество за изследване и защита на бозайниците (Dutch Society for the Study and Conservation of Mammals, VZZ) посети Източни Рогопи и по-специално района около село Маргарио. Дружество то и неговата полева група са доброволни неправителствени организации, които обединяват усилията на професионалисти и аматори при изучаване на бозайниците. Основната дейност на FWG е да разбива и насърчава терени проучвания. Често от тези посети дружеството организира пътувания на полеви лагери в други страни. Целта е членовете на групата да се запознаят със звярът, които са регул или не обитават Холандия, както и да увеличат познанията си за методите за изследване им и обменят опита с колегите си от страната – домакини. Срещата беше организирана и с местните организации, за да се осигури популярност на получените резултати и възможност те да се използват практически при опазването на вида в същността му и техните местообитания. Усилванията по време на теренината работа са насочени към попълване на празните в познанията за местната бозайна фауна, пределено съвместно с домакините.

Полевият лагер през 2002 беше организиран с помощта на екипа на Природозащитния информационен център "Източни Рогопи" в град Маргарио. Научната програма беше разработена и осъществена със сътрудничество с животворните екипи на Теодора Ивanova от Научният природоизучавачки музей и Стояно Стоянов от Българското дружество за защита на птиците, клон Хасково. Подготовката е била представена от разработката на разпознаване и регистриране в Библиотеката на научния център и Интернет сайт на НПИ www.cl.bas.bg/nn/nmh).

Тук накратко са представени само най-основните резултати. Дребните наземни бозайници бяха проучвани с помощта на живоловни капани в продължение на 10 дни. Всяка изразена в една събранието би една капана в различни типове за района местообитания. В капаните различени в близост до вода бяха хлебни основно Microtus guentaleri, Mus macedonicus, Neomys anomalous и Apodemus flavicollis. Провеждани са изразени редици с възможност за избор на подходящи за изследване места и на установени вида и местообитания (на разположение на местностите се в библиотеката и интернét страницата на НПИ www.cl.bas.bg/nn/nmh).

Всяка нощ бяха организирани системни проучвания с ултразвукови гемекомпи. В резултат бяха открити убежища и размножителна колония на следните вида: Pipistrellus pipistrellus, Rhinolophus hipposideros, R. ferrumequinum и Plecotus auricula. Особено възбуждащо за всички беше откриването на убежища на бългоска прилепи (Tadarida teniotis) в център в склад масив северно от Маргарио. За повече пъти в района, в изоставена обществена постройка, бяха открити и размножителна колония на Myotis mystacinus s.l. Интензивните условия с орнитологически звяр са трудоемки за разпространението на някои вече известни за района прилепи, а също така добивката е усукана нови за района вид - Nyctalus lasiopterus. При събирането на материал са открити R. hipposideros, Myotis mystacinus, M. nattereri и Nyctalus lasiopterus. Събирането и мношество от птици и диви хищни птици, чиято обработка е било предвидено разширява за упражнение на Suncus etruscus още преди твърдите анализы.

Данието за едри бозайници са свързани с регистрирането на следи на вълци (Canis lupus) и вълка (Lutra lutra), кото и нападения бой на диваци (Canis aureus).

В заключение - десетте дни на съвместна работа съотвеждаха много нови данни за бозайницата в Източни Рогопи, обезопасиха я от безпокои и познанията на изследователите при използване на нови съвременни методи и постигнаха успехи в разбиване на работата и опазване на бозайниците.
First record of the Cat snake *Telescopus fallax* Fleischmann, 1831 (Reptilia: Serpentes) in the Eastern Rhodopes Mt., Bulgaria

Boyan P. PETROV, Svetlana HRISTOVA, Hristo HRISTOV

Abstract. We report the occurrence of the Cat snake (*Telescopus fallax*) from the central parts of the Eastern Rhodopes (Madjarovo). The region was intensively herpetologically studied in the recent years but this species of snake was overlooked. Almost no data, beside a single juvenile specimen, is available in order to assess its local range and relative density. Although the new locality does not extend considerably the species range it has zoogeographic and conservation importance.

Key words: *Telescopus fallax*, Eastern Rhodopes Mt., Bulgaria

Introduction

The Cat snake (*Telescopus fallax* Fleischmann, 1831) occurs in Europe only in the Balkans following its western (Adriatic) coast southwards of Trieste, Continental Greece, on most of the Aegean islands (incl. Crete), Malta, Macedonia, Bulgaria and the coastal parts of European Turkey (GASC et al., 1997). In Bulgaria it was discovered relatively late (BESHKOV, 1959). Up till now this snake was known only from the valley of the river Struma south of Kresna Gorge (PETROV & BESHKOV, 2001) (Fig. 1). Its highest localities are situated at about 700 m a.s.l. In NE Greece the Cat snake occurs almost continuously in the hilly lowlands, including the southern slopes of the Rhodopes Mt. It was reported within the Greek Eastern Rhodopes, where this snake is relatively rarely encountered (HELMER & SCHOLTE, 1985). It has never been reported nor suspected to occur in the Bulgarian part of the Eastern Rhodopes, though intensive herpetological research was carried out in the period 1992-2000 (PETROV et al., 2001).
Material and methods

On 30.08.2002 a freshly killed subadult Cat snake was brought to the Nature Information Conservation Centre "Eastern Rhodopes" (NICCER) in Madjarovo. The specimen was found in a rocky gorge formed by a temporal stream, which crosses the periphery of the urban area. The body measurements are as follows: total length: 292 mm, length of the tail: 40 mm. The shape of the pupil was visibly narrow and vertical. Coloration, head and dorsal patterns are typical for the species. The specimen was mounted on glass and stored in 70% alcohol. It will be housed in the NICCER in Madjarovo.

Discussion

The valley of the river Arda offers great variety of habitats. The stoniest ones are found around Madjarovo, where volcanic screes with scarce vegetation, rock faces and other rocky formations are very common. On the other hand, Madjarovo is far to the north of the localities reported in NW Greece. Out of the 10 species of snakes reported for the Eastern Rhodopes (PETROV et al., 2001) only the juveniles of the Four-lined snake,
Elaphe quatuorlineata sauromates (Pallas, 1811), resemble the coloration and dorsal features of the Cat snake.

Regarding the frequent visits of many zoologists (mainly bird-watchers) in Madjarovo in the last 12 years, as well as our own field research in the region, it was hard to believe that a new species of snake could be found around the city. We have no other data on the occurrence of the Cat snake in the Eastern Rhodopes Mt. but presumably it is locally very rare and occurs in small-sized isolated populations. In conclusion, this record did not extend considerably the range of the Cat snake, but we add a new surprising point to its distribution in Bulgaria and increase the number of the reptiles, found in the Eastern Rhodopes, to 26 species 11 of which are snakes.

References

Received on 11.10.2002

Author's addresses:
Boyan P. Petrov
National Museum of Natural History
Tsar Osvoboditel Blvd. 1
1000 Sofia, Bulgaria
E-mail: boyanpp@netbg.com

Svetlana Hristova, Hristo Hristov
Nature Information Conservation Centre "Eastern Rhodopes"
6480 Madjarovo, Bulgaria
E-mail: shristova_er@yahoo.com
Първа находка на комешката змия
(*Telescopus fallax* Fleischmann, 1831) (*Reptilia: Serpentes*)
в Източните Рогони, България

Боян П. Петров, Светлана Христова, Христо Христов

(Резюме)

Досега в България комешката змия беше известна само от Струмската долина, южно от Кресненския пролом. През 2002 г. в гр. Маджарово е уловен един млад екземпляр, което потвърждава някои по-ранни наблюдения в Източните Рогони. Популяцията вероятно е изолирана и е с ниска плътност. Новото находище не променя значително ареала на вида, но представлява интерес от зоогеографска и природозащитна гледна точка.
On some owls (Aves: Strigidae) in the high parts of Pirin (SW Bulgaria) and their parasitic flies (Diptera: Hippoboscidae)

Petar BERON

Abstract. In the Pirin Mts. (SW Bulgaria) very high localities of owls were recorded. The Tengmalm's owl (Aegolius funereus, new for Pirin) was netted at 2340 m, the Long-eared owl (Asio otus) - at 2760 m. Six parasitic flies (Ornithomyia avicularia L. - Diptera: Hippoboscidae) were collected on Aegolius funereus.

Key words: owls, Strigidae, Pirin, Diptera, Hippoboscidae, high altitude

While netting bats in Pirin in August 2002, Boyan Petrov and the author had the chance to catch two species of owls (Strigidae). As the information on the occurrence of owls in the high mountains of Bulgaria is very scarce, we give here the data of these rare observations.

On 23.8.2002 a Tengmalm's owl (Aegolius funereus L.) was caught in a net in the circus Bayuvi dupki at 2340 m of altitude (well above the upper forest limit, with patches of Pinus mugo). In his review of the birds of Pirin SIMEONOV (1986) does not mention Aegolius funereus among the 6 species of Strigiformes known from this mountain. According to SIMEONOV, MIČEV & NANKINOV (1990), this bird is known from Rila, Central Balkan and Rhodopes Mts. (Pirin is not mentioned). These authors write that Aegolius funereus lives in Bulgaria in old spruce forests at altitude from 1100 to 1800 m. The same limit (1800 m) is indicated for the entire areal of the species by KORPIMAKI (1997). We assume that our observation adds this species to the fauna of Pirin and to the fauna of the orophyte zone in Bulgaria. There is information that some colleagues have heard the voice of this bird in Pirin (BAUMGART, 1987), but this is the first certain capture. The recent distribution of Tengmalm's Owl in Bulgaria has been outlined by NANKINOV (1997) and NIKOLOV et al. (2001).

Another owl was netted even higher. Spending a night in the shelter "Koncheto" (2760 m), we netted 4 bats (Vespertilio murinus) (PETROV & POPOV, in prep.). One of them was attacked by Long-eared owl (Asio otus), which was
also captured. According to SIMEONOV (1986), in Pirin *Asio otus* inhabits areas with altitude from 600 to 1900 m. This is the upper limit of this species in Bulgaria (SIMEONOV et al., 1990). According to GLUE & NILSSON (1997), the highest altitude record of the Long-eared owl is in Armenia (2750 m). The bird was crossing the ridge, flying from one valley to another, but certainly the orophyte zone is part of its hunting territory, a fact not known in Bulgaria.

According to SIMEONOV et al. (1990), the only owl in Bulgaria recorded above 1900 m is the Little owl (*Athene noctua indigena* Brehm) - up to 2300 m. SIMEONOV (1986) mentions it as occurring in Pirin at Todorin vrah (2300 m). The next highest recorded owls in Bulgaria are the two species, subject of this paper, however recorded much lower than our findings.

Six specimens of parasitic flies (Diptera: Hippoboscidae) have also been collected on the *Aegolius funereus* caught by us. The finding of these flies at such a high altitude is interesting and contributes to the knowledge of the unknown parasitofauna of one rare bird. BERON (1972) reviewed the 11 species of the family Hippoboscidae known to exist in Bulgaria until this time. For 30 years following this publication only one species has been added to the list of Bulgarian Hippoboscidae: *Crataerina melbae* (Rond.) by POPOV (1995). According to BERON (1972), only the species *Ornithomyia avicularia* (L.) and *Pseudolynchia rufipes* (Macquart) have been known to parasitize owls in Bulgaria, both on *Athene noctua* in the Southeast of the country. No bird fly has been recorded so far in Pirin. The entire tribus Ornithomyini has not been known to occur in Bulgaria above 2000 m. The specimens found by us belong to the species *Ornithomyia avicularia* (L.).

References

PETROV B., POPOV V. In prep. On the bat fauna of Pirin mountain (Bulgaria) with review of the high-altitude occurrence of bats in Europe (Mammalia: Chiroptera).

Върху някои соби (Aves: Strigidae)
във високите части на Пирин и техните паразитни мухи (Diptera: Hippoboscidae)

Петър БЕРОН

(Резюме)

При лов на прилепи с мрежи Боян Петров и авторът уловиха и два вида соби (Aegolius funereus на 2340 m в циркуса Барабан и Asio otus на 2760 m при заслона "Кончено"). И за двета вида това са първите находки в България над 2000 m. Пернатоюнгата кукумялка се среща за пръв път със сигурност на Пирин. По няма бяха събрани паразитни мухи - Ornithomyia avicularia L. (Diptera: Hippoboscidae).
Сто години от смъртта на основателя на първото Българско ентомологично дружество Христо Пизулеф

Алекси ПОПОВ

Повод да си припомням за един от първите и малко известни български ентомолози е от една страна споменуването му от друга страна появата сред българската научна общественост за втори път на негова снимка. Снимката, която се публикува тук, беше пострадана на НПМ от неговата пра̀внука ст.и.с. г-р Олга Байчева от Централната хеминипология лаборатория при БАН.

Коя е Христо Пизулеф? Това е ентузиаст, извършил на границата между 19 и 20 век неберознато - основал първото Българско ентомологично дружество в Сливен. Роден е през март 1865 във Вицеп. През 1885 завършва Априлската гимназия в Габрово, а една година по-късно е студент по естествени науки в Мюнхенския университет, където се появява интересът му към ентомологията. Забравя се с висше образование и работи като гимназиален учител във Вицеп (1891-1894), Сливен (1894-1899) и Разград (1899-1903). Обществено е за Катти Сипел през 1893 в Мюнхен, откогато е публикуваната му фотография. Починал е на 6 април 1903 една на 38-годишна възраст.

Неговото име става известно на ентомологите у нас, когато основава дружество през 2 януари 1899 и неговия месечен орган - списание Светулка (6 броя, 1899-1900). В дружеството членуват Австрийскит колекционери Йозеф Хаберхайзер, живял през последните три години от живота си в Сливен, учителят, лекарин. Председателят на дружеството Хр. Пизулеф е отговорен редактор на първите книжки на списаниято и автор на повечето статии в него. Това са и един от първите статии, написани от български ентомолози. Те се посветени на неживите пеперуди в Сливенско, обикновено гърчи върху вертикалното им разпространение и размеждите в другите и домашните насекоми в България. Преди това Хр. Пизулеф е съставил зообудство за събиране и препариране на насекоми (1898) и учебник по зоология за средните училища (1896). Поради ограниченията на страната, несъвършен статус на зоологията във Вицеп, списанието спира да излиза и дружеството прекратява дейността си през 1901.

Отдаден всичко на ентомологичните си интереси, Хр. Пизулеф проявява голямо желание за научна работа. Обаче липсата на подкрепяща литература за определение и почти пълната неизвестност на българската фауна по онова време са причини за позабравянето установяване от него на много неживи пеперуди, като напр. силно отличаващият се от всички български видове стационирен мегимерски вид Charaxes jasius (Linneus) и източноазиатският смъкъл Erebia ardo (Fabricius) [сея E. claudina (Borkhausen)]. Съществуват възможности за неживите пеперуди и непубликуван ръкопис сключен без коментар в първото обобщение на българските пеперуди фауна от Вахмайер (1902, Тр. Рус. ентом. общ., 35: 356-466), но са критично обсъдени и изяснени от списъка на българските пеперуди една година по-късно в монографията на Rebel (1903, Ann. k. k. naturhist. Hofmus., 18 [2-3]: 123-347). Пизулеф съобщава в Светулка 108 бяха неживи пеперуди и ние, че е събрал общо 456 брой пеперуди. Но след смъртта му според Вахмайер се е оказало, че колекцията му в много бедна и вероятно много от видовете в неговия ръкопис са посочени "по догадка". Затова той не е отговорил на молбите на проф. Гордиевич Вахмайер от Софийския университет и проф. Hans Rebel от Природонаучния музей във Виена за изпращане на някои видове за проверка. За съжаление колекцията му е напълно унищожена от борбори след няколко години.

Независимо че неговите публикации имат повече историческо отколкото научно значение, Христо Пизулеф е извършил истински подвиг за времето си със създаването по примера на германските университети на Българското ентомологично дружество само няколко години след първата статия на български ентомолози, три години след учредяването на Българското природознания дружество и десет години преди образуването на ентомологично дружество в София.
Нови данни за хорологицата на висши растения от различни ботанически райони на България

Васил ВУТОВ, Димитър ДИМИТРОВ

Abstract. Chorological data for 16 species are given in the paper. Thirteen of them are from the Sofia University Herbarium and they were collected through various research works. Another three were collected by the authors. The plants were collected from different floristic regions: the Danubian Plain, North-Eastern Bulgaria, the Fore-Balkan Region, Eastern Stara Planina Mountain, Sredna Gora Mountain, Vitosha Mountain, Tundzha Hilly Region, Thracian Plain, Znepole Region and West Frontier Mountains.

Key words: Flora, vascular plants, chorological data

В резултат на ревизия на хербарни образци в Биологическия факултет на СУ "Климент Охридски" са установени 16 вида с нови хорологични данни, като три са сбор от Димитър Димитров. Видът Alyssum pulvinara Vel. е с категория рядък, а Cerastium petricola Panc. е балкански ендемит.

Находище: Дунавска равнина - из полусенчестите места на Градинския дол до с. Луковица, Ломско, 16.06.1951 г.

Този бореален вид е известен досега от Североизточна България, Предбалкана, Стара планина, Вутоша, южната част на Струмската долина, Северен Пирин, Рила, Западни Родопи и Тундженска хълмиста равнина (Китанов, 1963; Кожухаров, 1992), Осогово (Урумов, 1904).

2710.11430. Dichostylis michelianus (L.) Nees, MG - 67, SV (N. Vihodcevski), SO 09003.

Находище: Тундженска хълмиста равнина, край речните пясъци на р. Тунджа до град Елхово, 21.07.1962 г.

Този хигрофит е известен досега от Черноморското крайбрежие, Струмската долина, долината на р. Места и Тракийската низина (Кузманов & Кожухаров, 1964; Маркова, 1992).

Нахождение: Тракийска низина, по пресъхналото, но влажно пясъчно легло на р. Марцца край гр. Харманли по посока на с. Доситеево, 21.10.1962 г.

Този адвентивен вид е известен досега от Черноморското крайбрежие, Струмската долина, Дунавската равнина и Западните гранични планини (Маркова, 1966; Андреев, 1992).

Нахождение: Измочна Стара планина, Лиса планина, над с. Горско село, Омуртагско, 10.05.1994 г., с купийки.

Досега този балкански ендемит е известен от Западните гранични планини, Пирин и Рила (Вълев, 1966; Петрова, 1992).

Нахождение: Тунджаанска хълмиста равнина, по скалист терен между ярата и келяк габър в района източно от с. Загорци, Бургаско, 26.05.1999 г.; по сухи места из храсталациите на с. Меница, Елховско, 07.06.1941 г.; по синури из нивите между селата Бояново и Робово, Елховско, 19.05.1941 г.; Дербенски възвишения, затребени места по варовит терен около с. Срем, Тополовградско, 23.05.1972 г.; Странджа планина, по затребени места край Малко Търново, 24.07.1977 г.; Предбалкан, из влажни ливади (изоставена зеленчукова градина) западно от с. Пакобица, Видинско, 20.06.1951 г.

Нахождение: Североизточна България, по влажни места до с. Генерал Колево, Добрчко, 03.06.1998 г.; Ихтиманска Средна гора, Дозенска планина, край временните блатата и потоци в местността Педочел, землище на с. Габра, 02.07.1955 г.

Нахождение: Тунджаанска хълмиста равнина, из реки храсталаци покрай р. Тунджа западно от с. Бояново, Ямболско, 26.05.1963 г.

Нахождение: Източна Средна гора, по варовити каменистии склонове на Кайрата над Старозагорските минерални бани, 05.05.1961 г.

0300.01200. *Alchemilla reniformis* Buser, FN - 91, SV (V. Gencev), SO - 99823.

Нахождение: Витоша, платото над х. Алексе, 07.1997 г.

Нахождение: Знеполски район, Рудина планина, местността "Славчето", 10.05.1996 г.

Нахождение: Североизточна България, гората при с. Коларци, Доброчко, с цветове, 06.05.1976 г.; Черноморско крайбрежие, в дъбова гора край с. Резобо, с цветове, 03.04.1990 г.

Досега този по-средиземноморски елемент е известен от Предбалкан, Средна Стара планина, Западни Средни Рогоби (Делипавлов, 1979; Анчев, 1992), Странджа планина (Gussev et al., 1998).

Нахождение: Малашевска планина, 21.06.1961 г.

Нахождение: Средна гора - Лозенска планина, мочур под кладенчeto
Досега този вид е известен от Източни Рогони и Странджа (Анчев, 1992).

Досега този вид е известен от Черноморското крайбрежие, Североизточна България, Струмска долина и Източни Рогони (Пеев, 1992).

Литература

Ганчев С., Коцев Х. 1963. Нови материали и бележки за флората на България. - Изб. бот. инст., БАН, 11: 149-152.
New data for the distribution of vascular plants in different botanical regions of Bulgaria

Vassil VUTOV, Dimitar DIMITROV

(S u m m a r y)

New chorological data are reported for 16 species of vascular plants from different floristic regions in Bulgaria. One of them - Alyssum pulvinara Vel., is categorized as Rare and one - Cerastium petricola Panc., is Balkan endemic.
Второ находище на балканския гекон
(*Cyrtodactylus kotschyi danilewskii* Strauch, 1887) в Русенско

Венцеслав ПЕТКОВ

За първи път за наличието на балканския гекон в България пише Ковачев (1905, Сб. науч. умотв., наук. и книж.на, 21). По-късно много български и чуждестранни учени изследват разпространението и подвидовата принадлежност на вида у нас. В момента се счита, че българските популации спадат към три отделни подвида - *Cyrtodactylus kotschyi danilewskii* (Черноморското крайбрежие на север до гр. Варна и Югоизточна България); *C. k. bibroni* (гоемината на р. Стръмна на север до Кресненското ханче) и *C. k. rumelius* (Тракийската низина) (Добрев, 1986 - Дипломна работа, Софийски ун. "Св. Кл. Охридски"). Ундхисов (1966, Известия на народния музеи - Русе, 2) съобщава за пръв път вида в Североизточна България - под пещерата Орлова чука при с. Пепелница, Русенско. В своето публикации авторът допуска, че уловените екземпляри спадат към подвида *C. kotschyi danilewskii*. Екземплярите се съхраняват в колекцията на отдел "Природи" към Регионалния исторически музей в Русе (инвентарен № 1170).

На 15.07.1999 г. около 15.00 часа на ул. "Любомирът" №10 в гр. Русе, на западната речна тераса, близо до устието на р. Русенски Лом, г-р Николай Ненов - уредник в Регионалния исторически музей в Русе, улови един екземпляр от *C. kotschyi*. В момента на невнимание екземплярът успя да избяга като единственият размер, който бе взет, е дължината на тялото (L. сопр.) - 30 mm.

На 07.08.2001 г. около 14.00 часа отново на същото място, г-р Ненов улови и донесе втори екземпляр. Размерите му са L. сопр. - 21 mm, L. сд. - 20 mm. Броят на надлъжните редове гръбни туберкули е 11. Няма туберкули пред и зад ухото. В момента от него е изготвен спиртен препарат и се съхранява във фонда на отдела под инвентарен № 1296.

Трети екземпляр от вида със следните размери: L - 49 mm, L. сд. - 45 mm е донесен в музей на 30.07.2002 г. (уловен в 16.00 часа). Броят на надлъжните редове гръбни туберкули е 11, а този на превеналните пори - 8. И трите индивида са уловени през деня, на южната стена на къща.

Според Добрев (1986) едн от основните белези, отличаващи *C. kotschyi danilewskii* от гръцките две подвида, срещащи се в България, е отсъствието на туберкули пред и зад ухото. При повторно определение на препарирания през 1965 г. екземпляр се установи, че и при него тези туберкули липсват. Този белег, както и броит на надлъжните редове гръбни туберкули показват, че русенската популация спада към подвида *C. kotschyi danilewskii*.

Адрес на автора:
Венцеслав Пенков
Регионален исторически музей
пл. Ал. Батенберг 3
7000 Русе
Кнут Андерсен и неговите проучвания върху българската фауна

Димитър Нанкинов

Abstract. Unknown information about the life and scientific activity of the Danish zoologist Knud Christian Andersen is adduced in the article. In the period 1901-1904 he worked in Bulgaria in the Natural History Museum in Sofia, where he succeeded in arranging and cataloging the rich collections of birds and mammals. At the same time he accomplished unique triennial studies of the night migration of the birds.

Key words: Knud Andersen, Biography, National Museum of Natural History (Sofia)

Провърва̀ло е на нашата зооло̀гическа наука от мова, че в зората на нейното развитие в България са работили такъв замайващо изследовател и ярък личност като Кнут Християн Андерсен. За този датско-скандинавски зоолог се знае твърде малко, не само у нас, но и в самата Дания. Преди повече от десетилетия, при работата му върху монографията "Птиците на град София" (Нанкинов, 1982) имах възможност да намеря някои сведения за него и за научната му дейност, които искам да споделя с колегите и зоолози.

Кнут Андерсен е роден на 29.04.1867 г. в град Фреденборг, в семейството на Андерс Андерсен (1823-1874) и Сесил Християн Дайнезен (1827-1894). През 1885 г. той е вече студент и същевременно преподава в различни частни
училища. От 1890 до 1901 г. е стажант в тамошния Зоологически музей, където се занимава с птици. Показва изключителни качества като орнитолог - проучва орнитофауната на Фарърските острови и публикува "Бележки върху птиците на Фарърските острови". Първата част от тях излизат още през 1898 г. (ANDERSEN, 1898), а издаването им продължава почти до 1905 г. Очакванията на неговите учители за бъдещите му орнитологически успехи в Дания са били доста големи. Но икономическата трудност го принуждават през 1901 г. да го избягва в България. Постъпва на работа отначало като помощник на директора на Естествено-историческия музей в София доктор Паул Леверкюн, а по-късно като куратор в същия музей. Поканата и назначаването в музея на Кнут Андерсен, а не на друг специалист, не е било случайно. През това време в Двореца на княз Фердинанд I са събрани вече няколко големи колекции: от птици, стрелци в различни райони на страната; откупената през 1892 г. великолепна орнитологическа колекция на живеещия в Цариград френски граф Амеде Алеон; колекцията от африкански птици и бозайници на чешкия пътешественик г-р Емил Холуб и накрая - колекцията от индийски птици на англичанина Стюарт Бейкър. Именно с подреждането и каталогизирането на тези колекции се заема Кнут Андерсен (АТАИСОВ, 1955). От разговор, пробеген с академик Иван Буреш на 6.03.1975 г. разбрах, че в музея К. Андерсен е работил и върху бозайниците, като е имал предпоследния към прилепите. Допринесъл е много и за попълването на колекциите с препари на птици, бозайници и други животни, което е дало възможност впоследствие да бъде издален обемистият каталог "Колекциите на Естествено-историческия музей в София на Н.В. княз Фердинанд I" (GRAETZER, 1907). В предговора към колекциите на бозайниците (388 екз. от 109 вида) се споменава: "Нашата скромна колекция е определена от директора на музея, приговорния съветник, покойния г-р Паул Леверкюн и неговия бивши асистент, зоологът с висока компетентност господин Андерсен". На страниците на каталога намираме препарати от птици, колекционарани от него: малък бегл присмесифилник (Hippolais pallida) и домашно врабче (Passer domesticus), съотбмено от 15 и 27.06.1901 г. в София и 2 мъжки зеленогушци обесарки (Emberiza cirrus) - на 16.12.1902 г. в Евксиноград. В постъпленията на музея има и препарати от собствената колекция на Андерсен в Дания: 3 мъжки тъпченобъки (Pinicola enucleator), събрани от него в Копенхавен на 8, 10 и 13.11.1890 г.

Приложената към настоящата статия снимка се публикува за първи път и е прабена в София на 3.07.1902 г. Така е изглеждал 35 годишния Кнут Андерсен, когато е работил в нашия Привадоначен музей. Ежедневните му записки тогава са толкова подробни, че може да възстановим природната картина в стополната около този ден. Времето е било много сухо, в градските паркове, градини и градби са гнездили големи количества южни славеци (Luscinia megarhynchos), белогуси и черноглаби коприварчета (Sylvia communis, S. atricapilla). По таваните на къщите мътили хиляди чабки (Corvus monedula), а по
улиците, след волските и конски каруци, са се разхождали множество качулки чучулки (Galerida cristata). В записките му от следващия ден, 4.07.1903 г. чете: "Последни наблюдения в гнездовите територии на ястребовгъстото корпиварче (Sylvia nisoria). Никакъв негов прелет не беше забелязан... Започва пранзием прелет на млади жълти черноглави стърчиопашки (Motacilla flava melanocephala "feldegg") и т.н.

През целата периода на пребиваването му в България обаче Кнуд Андерсен проучва най-интензивно ношната миграция на птиците. Тези проучвания са започнали вдигнала след поява му в столицата (има наблюдения за птиците от средата на юни 1901 г.) и са завършили след около три години, преди непосредственото му отпътуване от България (има наблюдения от 6.02.1904 г.). Постоянните наблюдателни пунктове се намирали в Княз Борисова градина, на изток от тогавашните граници на града, вероятно по "Цариградско шосе" на височината след пресечката му с дневния булевард "П. Яворов". Предполагам, че Кнуд Андерсен, както и другите чужденци, привлечени към музея, е живеел в Двореца (Самият музей, старатата му сграда, която се е намирала на мястото на дневния музей, точно на ъгъла на бул. "Цар Освободител" и ул. "Георги Бенковски"). Нека за момент да си представим неговото ежедневие. Ставал е часове преди разсъмване, минавал е по дневните булеварди "Цар Освободител" и "Цариградско шосе" и е достигал до наблюдателния пункт. След разсъмване, при завършване на заръжителните наблюдения, се е завърнал в Двореца и е работил със зоологическите колекции. Има много и подробни ношни наблюдения, което показва, че при интензивна ношна миграция неговите проучвания са започвали пръв, вземали пръв и завършвали пръв. В почистванито дни е обикалял града и околностите. Във втората част на статията Андренс (1905) уточнява, че "наблюденията, с изключение на ношните пределни, са провеждани всеки ден, сутринта, по 1-1.5 часа."

Събранията информация от изследванията публикува в голяма статия (6 чг части) "Наблюдения върху прелета на птиците в София - България". Оформениите ръкописи, отпълвало единицата (написан в София на 30.05.1902 г.), след това вторият (завършен в Берлин на 4.07.1904 г.) са били изпратени в редакцията на унгарското списание "Aquila", където предизвикали небероятен интерес. До тогава подобни публикации бяха извънредно малко и немски език гробе части на статиите (Andersen, 1902, 1905) са приложени с реда коментари на известни орнитологи и метеорологи. Това са уникални за времето си проучвания върху ношната миграция на птиците, изключително ценни и полезни, ненаучните до сега. Кнуд Андренсен още преди 100 години е определял ношните миграции до вида. Имал е богат теренен опит, големи знания по орнитология, работил е комплексно, като е определял видовете по силуети (с помощта на далекоглед) и по гласовете им. Присъстват също данни за атмосферно налягане, температура, посока на вятъра, вълните и т.н., т.е. всички
неца, необходими за изследването на ночната миграция. Само един цимат от стр. 55 на неговата статия: "Засушаването предизвика кратък прелом в началото на есента. Вечерта на 17 срещу 18.09.1903 г. слабият дъжд въздействува значителен помок от прелетни птици, но едва на следващата нощ, с поредния дъжд започва масова вълна на прелет. Дължината на прелета на масова миграция... Хиляди и гекемки хиляди индивиди преминаваха от следните видове: тъ̀бъ̀дъ̀к (Coturnix coturnix), зеленоношка (Galinula chloropus), голяма и средна пъструшка (Porzana porzana, P. parva), малък воден бик (Ixobrychus minutus), грубкеста, сива, ръженка и ношна чапла (Ardea ralloides, Ardea cinerea, A. purpurea, Nycticorax nycticorax), вечерна ветрушка (Falco vespertinus), синица (Coracias garrulus), папуняк (Upupa epops), черноглаво коприбарче, елоб и бу̀к водна цветна (Phylloscopus collybita, Ph. sibilatrix), горска бъ̀бъ̀цица (Anthus trivialis), гра̀нска червеноклюнмица (Phoenicurus phoenicurus), червено̀гъ̀ска (Erithacus rubecula), сива и белобрата мухоловка (Musccapa striata, Ficedula albicollis), сив жерав (Grus grus)". След това за всеки от тези видове се съобщават подробности за миграцията. Кнуд Андерсен резюмира ввъншеният нощен прелет на навяка (Numenius arquata) в разгаря на лятото, в края на юни; на зеленоглавката (Anas platyrhinchos) през втората половина на ноември; още през зимата на 6 февруари отбелязва началото на пролетната миграция на беловежкия грош (Turdus iliacus) и м.н.

Въпреки че публикациите се отнасят до прелета на птиците, в нея могат да бъдат намерени сведения по фенология, за развитие и цъ̀фтеж на дървениата през пролетта, за някои земноводни (например, че на 28.03.1902 г. е слушано квакането на жабата дървесница - Hyla arborea), за лемето на пеперудите (на 3.03.1902 г. се появил коприла пеперуди - "Vanessa" urticae) и обилието метеорологични данни. Определени е подвъзможната принадлежност на жъ̀лтата стъ̀чоноклюнмичка (Motacilla flava), дъ̀лгоношата синизер (Aegithalos caudatus), водния кос (Cinclus cinclus), горската зигартка (Sitta europaea), горската дъ̀боловка (Certhia familiaris), тръ̀стиковата обесарка (Emberiza schoeniclus) и со̀къ̀мка (Garrulus glandarius).

Неочаквано през 1904 г. Кнуд Андерсен напуска Бъ̀лгария. Според едини източници той е "бил с особен характер и не е успял да схване с ужасата обстановка и поради това през 1904 г. напуска работата" (Далъл, 1933). Според други (г-р Дейбуг Сноу в писмо до мен) "той е оставил Софийския музей след накъкто разногласие с властите на музей", а по-думите на академик И. Бу̀ре, неговото заминаване е било резултат от неразбираемостта му с княз Фердинанд. За известно време Кнуд Андерсен се установява в Берлин. Там в началото на юли 1904 г. завършва втората част от статията за прелета на птиците в нашата столица и отпътува за Лондон. Постъ̀пва като специалист по бозайниците в Британския музей. Отича и работи неофициално в музея, като е издръжан от него по-богат колега. Впоследствие вероятно е назначен на щатна длъ̀жност и става световно известен специалист по прилепите. Наред с различни научни статии въ̀рху
приплените (ANDERSEN, 1906а, б) той съставя и прочутия Каталог на Megachiroptera в Британския музей (ANDERSEN, 1912). Екземпляр от каталога, написан от автора "За Царската библиотека в София от автора" е изпратен от Лондон на 18.04.1912 г. и сега се намира в библиотеката на Института по зоология на БАН.

На 1 март 1907 г. в Лондон четиринесетгодишният Кнуд Андерсен се жени за 25 годишната Герта Йохан Хенриксен (2.11.1882 - 22.10.1923). Бракът се оказал несполучлив и донесъл неборовото големи неприятности за Кнуд Андерсен и за неговата научна работа. Д-р Сноу пише: "Семейният живот на Кнуд Андерсен представлявал пълна разруха. Жена му била алкохоличка, понякога съблякала със сълзи в Британския музей, притеснявала го, добеждала го до отчаяние и безразсъдство...".

Сведенията за жизнения път на този награден зоолог сеяет през един юнишки ден на 1918 г., когато той излиз от къщата си в Лондон и изчезва безследно.

За съв крамък живот Кнуд Андерсен е постигнал при високи върха в зоология. Най-напред това са дългогодишните, и съдейки по отзивите за тях доста качествени проучвания върху орнитофауната на принадлежащите на Дания Фарърски острови в Атлантическия океан. Без съмнение за втори връх трябва да приемем съставянето на него катахог на подразред Големи прилепи, т.н. Летящи кучета (Megachiroptera) - плодоядни тропически и субтропически прилепи. Гордост за страната ни, много важен за нас и щобеще за световната орнитологическа наука е третият връх, а именно пионерите му проучвания върху нощната миграция на птиците в България. Интересни са финалните резюме на тази статия, показващи неговата скромност, дълбочинност и възхищаващо му от нашата природа: "...Времето, което можах да отделя за наблюдения, беше твърде осъзнатно. Доколко съм успял да допринеса за изясняване проблемите на прелета не знам, но беше пак бележито, което привеждам, сигурно ще имат известна полза като сравнимостен материал, ако някога в България се появи интерес за сериозно, планомерно изследване на багтация птици в тази страна".

За да я има българската наука, много е важно, че в нея са работили и, слава Богу работят, такива трудолюбиви и талантливи учени като Кнуд Андерсен, учени достойни с "особен" характер. За учените от ранга на К. Андерсен, науката е свещен храм, където човек трябва да притежава съвършен знания в своята област и да работи всеотдайно. Само такива личности остават трайни следи в развитието на науката. В това отношение Кнуд Андерсен е добр пример за всички млади колеги, превъзхождайки първите изследователски стъпки.

С най-тълпока благодарност си спомням разговорите му за Кнуд Андерсен, проведени с академик Иван Буреш преди повече от четвърт век. При събирането на материали за настоящата статия помогна ми обаята също д-р Дейвид Сноу - сътрудник на Британския музей, и господин Роналд Пил - секретар на Британското орнитолошко дружество.
Knud Andersen and his studies of Bulgarian fauna

Dimitar NANKINOV

(Summary)

Unknown information about the life and scientific activity of the Danish zoologist Knud Christian Andersen is adduced in the article. In the period 1901-1904 he worked in Bulgaria in the Natural History Museum in Sofia, where he succeeded in arranging and cataloging the rich collections of birds and mammals. At the same time he accomplished unique triennial studies of the night migration of the birds. After that Knud Andersen worked in the British Museum (Natural History). He achieved three high attainments: the long term studies of the ornithofauna of the Faroe Islands, the important Catalogue on Megachiroptera of the British Museum and the pioneer and detailed studies on the night migration of the birds in Bulgaria, unsurpassed until now.
Пряродонаучният музей на Македония

Петър БЕРОН

В столицата на нашите най-близки съседи Скопие, на бул. "Илинден" № 86, се издига един от най-модерните природонаучни музеи на Балканския полуостров. Създаването му е свързано с името на д-р Станко Караман. Роден е в Сараево през 1889 г., заемалът югославски биолог работи първо във върху рибите, земедобочни и млекохобии. От 1922 г. той започва изследванията си върху македонската фауна и още през 1924 г. публикува в Спом монографията "Рибите на Македония". През 1925 г. започва да функционира зоологическия музей (в рамките на Музея на Южна Сърбия). С това се поставя началото на Пряродонаучния музей на Македония. Наред със събиране на едробиачни животни от околностите на Скопие, музеят организира първите изложби на птици, риби, земедобочни и млекохоби. През първите години музейт бил настанен в 6-те стаи на Музикалното училище. Чак до Втората световна война музеят, чийто единствен научен работник бил самият Станко Караман, се местили от сграда в сграда, но успял да събере значителна колекция и да издаде 7 брои от сп. "Analyses".

През 1941 г. Ст. Караман заминава за Сърбия, а след това за Далмация. Музеят става филиал на Царския природонаучен музей в София. Д-р Буров предлага на Ст. Караман да остане на работа, а след отказа му изпраща за директор на филиала ентомолога д-р Кръсто Гулецков. Под негово ръководство научните работи на музей продължават, комплектуват се нови колекции, които през есента на 1941 г. се преносят в зала и се завършва сграда на ул. "Орце Николов" № 11. Там остава до земетресението през 1963 г., който също пострадват научните колекции и особено тези от рибните, описани от Ст. Караман и сина му Гордан. При земетресението са унищожени и много типусни материали.

След войната музеят започва нов живот, вече в столицата на македонската държава. През 1946 г. за директор е назначен П. Икономов, който остава такъв до 1955 г. През 1952 г. в музея се бръща и Ст. Караман и грабатата основават изследванията върху Сопореда, а Ристо Гаревски създава Плевнотроположното отделение. Петковски защищава дисертация през 1957 г. а Гаревски - през 1964 г. Сега колекциите на музея включват над 10 000 фрагмента от кости на изкопаеми животни.

През 1955 г. за кустос е назначен проф. Йовчо Чиновски (защищава дисертация през 1953 г.). Под негово ръководство се увеличават значително ентомологичните колекции на музея. Чиновски е и научен ръководител на председател за "Фауна на Македония", от което днес са изложени томове върху кореногуме (Scolitidae, Zoria Karaman), гесемокракуме раци (Decapoda, Macrops Karaman), дългогракуме комари (Tipulidae, Dyticha Simova-Tohni), държовитите червеи (Lumbricidae, Йовчо Шранков). През октомври 1957 г. Ристо Групе е назначен за кустос, а от 1959 до 1977 г. той започва под ръководството на Владислав Забежки. Особено заслуга за изработването на рибните и колекции имат препараторите Киро Божевски (още от отдели военната) и Йовчо Кушевски (от 1974 г.).

При канструирането на музея през 1967 г. построяха главно научните колекции и спиртните препарати от риби и млекохобии. Основните материали били подложени в четири бараки, където продължавали до откриването на съвременната сграда през 1969 г.

Постепенно в музей са се комплектували значителни научни колекции. Те включват над 270 000 екземпляра (почти изцяло от Македония). Отделът по палеонтология наброява 17 960 екз., ненасекомите безгръбначни са 35 446, насекомите - 179 593, гръбначниите - 28 058, растенията - 10 037, минералите - 287 и скалите - 184 екземпляра. Тук са включени и материали, подарени от отделни ученци: повече от 20 000 екз. Ephemeroptera и Plecoptera (П. Икономов), много видове от колекцията на Слави Хаджикише (фауна на Охридското езеро), колекцията от 5498 гнезда пеперуди на д-р Славчо Янков и др.

Научните изследвания в музей се провеждат на основата на проектите: "Фауна на Македония", "Бозайници на Македония", "Биоразнообразието на Македония", "Реставриация на Долинското езеро", "Минералогия, картини и палеонтологични проучвания в Македония" и др. Те се подпомагат от библиотека с близо 50 000 тома. Музейните изследвания се разменят с 419 институции от 47 държави и Македония. "Специалитет" на научно-ползванюзапорския обмен на Природонаучния музей са многобройните изложби, които музеят изпраща в други страни или приема в обширната си зала за временно изложби.

Трябва да се отбележи активното сътрудничество на музей в Скопие с българските изследователи. Музей обменя своите изследвания със съсед български институции в София, Пловдив, Варна и Стара Загора (за сравнение - с 29 институции в Сърбия и Германия). Българските зоолози продължават традицията на учените от тогавашния и в изкуството на фауната на Македония. Публикацията на П. Дримков, И. В. Бурев и гр. учени от Царската музей в по-ново време са последвани от тези на П. Стоянов (Chilopoda), Г. Благов (Araneida), В. Георгиев и В. Йорданова (Coleoptera) и много други.

От Националния природонаучен музей в София бяха изпратени в Скопие експонати за изложба върху фауната на морето. През 2002 г. бяха разменини изложби: Музей в Скопие предостави птици на тропическите страни (91 птица от Музей в София), а в българската столица бяха предоставени изложби "Откриване на растения на Република Македония". Изложбата в Скопие беше открита на 17 май 2002 г. в присъствието на зам.-министъра на културата на Македония, на завеждащия българското посольство в-к Койчо Младенов, на директора на НИМВ-ВАМ Петър Берон и на много граждани. Изложбата "Откриване на растения в Република Македония" беше открита във фойерето на НПМ на 18 юни 2002 г. Гостите бяха и четири представлятели на музеи в София, като слово произнесе г-жа Тамяна Бойкова.

Успешното развитие на сътрудничеството между музеите на България и Македония - страните с близка природа и продължителна обща история - е нещо, което ще се стремем и в бъдеще учените от двете държави. Между музеите ни е сключен договор за сътрудничество, който предвижда нови съвместни изложби и изследвания.
Volume 15, Sofia, 2002
Bulgarian Academy of Sciences -
National Museum of Natural
History

ПЕДАГЕЙОНА КОЛЕГИЯ
ст.н.с. Петър БЕРОН
(отговорен редактор)
Павел СТОЕВ (секретар)
ст.н.с. Алекси ПОПОВ
ст.н.с. Красимир КУМАНСКИ
ст.н.с. Златозар БОЕВ

Адрес на редакцията
Българска академия на науките -
Национален природонаучен музей
бул. Цар Освободител 1
1000 София

EDITORIAL BOARD
Petar BERON (Editor-in-Chief)
Pavel STOEV (Secretary)
Alexi POPOV
Krassimir KUMANSKI
Zlatozar BOEVE

Address
National Museum of Natural History
Tsar Osvoboditel Blvd. 1
1000 Sofia

© Национален природонаучен
музей - БАН, 2002

Научно и техническо редактиране:
Павел СТОЕВ
Алекси ПОПОВ

Излязла от печат на 31.12.2002
Формат 70x100/16
Тираж 350
Печатни коли 10.25

Отпечатано в „Искър“ ЕООД
ISSN 0205-3640
УКАЗАНИЯ ЗА АВТОРИТЕ

В поредицата Historia naturalis bulgarica се опечатвам науки приноси по зоология, ботаника, палеонтология и геология и оригинали статии по музеология, история на природознанието, информация върху музейни колекции и др. Публикуваните са на един от следните езиков: български (с резюме на чужд език), английски, немски, френски и руски (с резюме на български език).

Изисквания към ръкописите:
1. Ръкописът се предава на дъската, съпроводена с една разпечатка. Приемам се файлове, обработени на програмата Word for Windows и записани както RICH TEXT FORMAT (*.rtf). Файлът съдържа само един шрифт (без отстъпи, без използване на Bold, без текстове само с главни букви, без подобни интервал и друго ненужно форматиране). Заглавието, главите и нощите абзац да се отделят с един прazen рег. Курсив се използва само за имената на макосинове от родовата и видовата група. Цитираните в текста и литературата автори (но не и авторите на изследвания) се изписват с главни букви, както е показано по-долу. Разпечатката да бъде на стандартната машинописна резолюция (10 реда х 60 знака). Ръкописът да бъде напълно комплектован (ако е необходимо с литературен списък, таблица, фигура, текст към тях, резюме на съответния език).
2. Максималният обем на статията (влк. таблиците, графичните, литературата и резюмето) не трябва да надхвърля 20 стандартни страници. По-големи статии се приемат само по изключение.
3. Авторът да се изписва с пълно собствено и фамилно име.
4. След името на автора следва ABSTRACT, написан на английски, не по-голям от 10 реда, които синтезират присъствия на статията.
5. След абстракта се изписват до 6 ключови думи (KEY WORDS), представлящи най-добре съдържанието на статията.
7. Литературните списъци включват само източници, цитирани в текста на статията и подредени по алфаветен рег. Когато статията е на български или руски език се изража авторите на цитирания, следвани от тези на латиница. В статияте на западен език всички автори се подреждат по общ алфаветен рег на латиница (ако статия или книга е написана на кирилица, ползвана е резюмето на резюмето, а ако няма такова - заглавието се превежда, а не транслитерира). Източниките, в които е публикувана статията, се дават транслитериран, ако няма заглавие и на западен език.
Примери за библиографско описание:
8. След литературата следва пълната почентска и електронен адрес на автора или авторите.
9. Резюмето се предава под названието език и не трябва да надхвърля 10% от общия обем на статията.
10. Таблиците, графики и сканирани рисунки се предават на отделен файл/файлове. На разпечатката се посочва точното им разположение в текста. В текстовете файл се поставя и заглавието на табличата (графичната, фигураната), както и легенда към тях.
11. Таблиците се номерират и със заглавие. Да не се използват интервали и табулиатор; да не се разделят с вертикални, а само с хоризонтални линии.
12. Рисунките, чертежите и фотографиите се означават като "фиг." и се номерират (да се избягва използването на цифри и букви или на две цифри) и трябва да са съобразени със следните изисквания:
- чертежите (графики, диаграми) и рисунките се представят в 400 dpi за възпроизвеждане 8 зъб и до тройно по-големи от размера им в печатната страна.
От всяка публикация се получават безплатно по 40 авторски отпечатъка.